CP/M
Reference
Manual

Written by Digital Research

Digital Research, Post Office Box 579
Pacific Grove, CA 93950

PART 3: CP/M REFERENCE MANUAL

Chapter 1

Introduction to CP/M Features and

Facilities

Introduction

An Overview of CP/M 2.0 Facilities
Functional Description of CP/M

General Command Structure
File References
Switching Disks
Form of Built-In Commands
ERAse Command
DIRectory Command
REName Command
SAVE Command
TYPE Command
USER Command

Line Editing and Output Control

Transient Commands
STAT
ASM
LOAD
DDT
PIP
ED
SUBMIT
DUMP
BDOS Error Messages

Chapter 2

CP/M 2.0 Interface Guide

> Introduction

Operating System Call Conventions
Sample File-to-File Copy Program

Sample File Dump Utility
3-a

uuucpuuu
Lo W

3-36

3-41
3-43
3-63
3-66

Sample Random Access Program 3-69

System Function Summary 3-76
Chapter 3
CP/M Editor
Introduction to ED 3-79
ED Operation 3-79
Text Transfer Functions 3-79
Memory Buffer Organization 3-83
Memory Buffer Operation 3-83
Command Strings 3-84
Text Search and Alteration 3-86
Source Libraries 3-88
Repetitive Command Execution 3-89
ED Error Conditions 3-89
Summary of Control Characters 3-90
Summary of ED Commands 3-91
ED Text Editing Commands 3-92
Chapter 4
CP/M Assembler

Introduction 3-97
Program Format 3-99
Forming the Operand 3-100

Labels

Numeric Constants

Reserved Words

String Constants

Arithmetic and Logical Operators

Precedence of Operators
Assembler Directives 3-105

The ORG Directive

The END Directive

The EQU Directive

The SET Directive

The IF and ENDIF Directives

The DB Directive

3-b

The DW Directive
The DS Directive
~ Operation Codes
Jumps, Calls and Returns
Immediate Operand Instructions
Increment and
Decrement Instructions
Data Movement Instructions
Arithmetic Logic Unit Operations
Control Instructions
Error Messages
A Sample Session

Chapter 5

CP/M Dynamic Debugging Tool
Introduction
DDT Commands
The A (Assemble) Command
The D (Display) Command
The F (Fill) Command
The G (Go) Command
The I (Input) Command
The L (List) Command
The M (Move) Command
The R (Read) Command
The S (Set) Command
The T (Trace) Command
The U (Untrace) Command
The X (Examine) Command
Implementation Notes
Sample Session

3-110

3-114
3-116

3-123
3-125
3-126
3-126
3-127
3-127
3-128
3-129
3-129
3-129
3-130
3-131
3-132
3-132
3-133
3-133

Copyright Notice

The CP/M Reference Manual is supplied by Digital Research and edited in
part by Microsoft. .

All portions of this manual are copyrighted by Digital Research. Copyright®
1976, 1977, 1978 by Digital Research. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in
any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove, CA 93950.

Disclaimer

Digital Research and Microsoft make no representations or warranties with
respect to the contents hereof and specifically disclaim any implied
warranties of merchantability or fitness for any particular purpose. Further,
Digital Research and Microsoft reserve the right to revise this publication
and to make changes from time to time in the content hereof without
obligation to notify any person of such revision or changes.

3d

P

CHAPTER 1
INTRODUCTION TO CP/M FEATURES
AND FACILITIES

 Introduction

* Overview of CP/M 2.0 Facilities
» Functional Description of CP/M
» General Command Structure

» Switching Disks

e Form of Built-in Commands

ERAse Command
DIRectory Command
REName Command
SAVE Command
TYPE Command
USER Command

» Line Editing and Output Control
* Transient Commands

STAT
ASM
LOAD
DDT
PIP

ED
SUBMIT
DUMP

*» BDOS Error Messages

3-1

3-2

Introduction

. CP/Misa monitor control program for microcomputer system development
which uses IBM-compatible flexible disks for backup storage. Using a
computer mainframe based upon Intel’s 8080 microcomputer, CP/M
provides a general environment for program construction, storage, and
editing, along with assembly and program check-out facilities. An important
feature of CP/M is that it can be easily altered to execute with any computer
configuration which uses an Intel 8080 (or Zilog Z-80) Central Processing
Unit, and has at least 16K bytes of main memory with up to four IBM-com-
patible diskette drives. Although the standard Digital Research version
operates on a single-density Intel MDS 800, several different hardware
manufacturers support their own input-output drivers for CP/ M.

The CP/M monitor provides rapid access to programs through a com-
prehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as sequential
and random file access. Using this file system, a large number of distinct
programs can be stored in both source and machine executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystem. Optional software includes a powerful Intel-
compatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled with CP/M’s Console Command
Processor, the resulting facilities equal or excel similar large computer
facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic 170 System (hardware dependent)
BDOS Basic Disk Operating System

CcCPp Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the diskette
drives and to interface standard peripherals (teletype, CRT, Paper Tape
Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware environment by “patching” this portion of
. CP/M.

The BDOS provides disk managementby controlling one or more disk drives
containing independent file directories. The BDOS implements disk
allocation strategies which provide fully dynamic file construction while

3-3

minimizing head movement across the disk during access. Any particular file
may contain any number of records, not exceeding the size of any single disk.
Inastandard CP/M system, each disk can contain up to 64 distinct files. The
BDOS has entry points which include the following primitive operations
which can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations.

CLOSE Close a file after processing.

RENAME Change the name of a particular file.

READ Read a record from a particular file.

WRITE Write a record onto the disk.

SELECT Select a particular disk drive for further operations.

The CCP provides symbolic interface between the user’s console and the
remainder of the CP/M system. The CCP reads the console device and
processes commands which include listing the file directory, printing the
contents of files, and controlling the operation of transient programs, such
as assemblers, editors, and debuggers. The standard commands which are
available in the CCP are listed in a following section.

The last segment of CP/M is the area called the Transient Program Area
(TPA). The TPA holds programs which are loaded from the disk under
command of the CCP. During program editing, for example, the TPA holds
the CP/M text editor machine code and data areas. Similarly, programs
created under CP/M can be checked out by loading and executing these
programs in the TPA.

It should be mentioned that any or all of the CP/M component subsystems
can be “overlayed” by an executing program. That is, once a user’s program
is loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area. A “bootstrap” loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need
only branch to the bootstrap loader at theend of execution, and the complete
CP/M monitor is reloaded from disk.

It should be reiterated that the CP/M operating system is partitioned into
distinct modules, including the BIOS portion which defines the hardware
environment in which CP/M is executing. Thus, the standard system can be

3-4

easily modified to any non-standard environment by changing the
peripheral drivers to handle the custom system.

An Overview of CP/M 2.0 Facilities

CP/M 2.0is a high-performance single-console operating system which uses
table driven techniques to allow field configuration to match a wide variety
of disk capacities. All of the fundamental file restrictions are removed, while
maintaining upward compatibility from previous versions of release 1.
Features of CP/M 2.0 include field specification of one to sixteen logical
drives, each containing up to eight megabytes. Any particular file can reach
the full drive size with the capability to expand to thirty-two megabytes in
future releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically separated
by user numbers, with facilities for file copy operations from one user area to
another. Powerful relative-record random access functions are present in
CP/M 2.0 which provide direct access to any of the 65536 records of an eight
megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a BIOS-resident
“disk parameter block” which is either hand coded or produced automat-
ically using the disk definition macro library provided with CP/M 2.0. The
end user need only specify the maximum number of active disks, thestarting
and ending sector numbers, the data allocation size, the maximum extent of
the logical disk, directory size information, and reserved track values. The
macros use this information to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking informationisalso
provided which aids in assembly or disassembly of sector sizes which are
multiples of the fundamental 128 byte data unit, and the system alteration
manual includes general-purpose subroutines which use this deblocking
information to take advantage of larger sector sizes. Use of these
subroutines, together with the table driven data access algorithms, make
CP/M 2.0 truly a universal data management system.

File expansion is achieved by providing up to 512 logical file extents, where
each logical extent contains 16K bytes of data. CP/M 2.0 is structured,
however, so that as much as 128K bytes of data is addressed by a single
physical extent (corresponding to a single directory entry), thus maintaining
compatibility with previous versions while taking fulladvantage of directory
space.

Random access facilities are present in CP/M 2.0 which allow immediate
reference to any record of an eight megabyte file. Using CP/M’s unique data
organization, data blocks are only allocated when actually required and
movement to a record position requires little search time. Sequential file
access is upwardly compatible from earlier versions to the full eight

3-5

megabytes, while random access compatibility stops at 512K byte files. Due
to CP/M 2.0’s simpler and faster random access, application programmers
are encouraged to alter their programs to take full advantage of the 2.0
facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for file
attributes and user areas, while the CCP provides a “login” function to
change from one user area to another. The CCP also formats directory
displays in a more convenient manner and accounts for both CRT and
hard-copy devices in its enhanced line editing functions.

Functional Description of CP/M

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console. In general, the CCP
addresses one of several disks which are online (the standard system
addresses up to four different disk drives). These disk drives are labelled A,
B, C, and D. A disk is “logged in” if the CCP is currently addressing the disk.
In order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by thesymbol “>"
indicating that the CCPisready for another command. Uponinitialstart up,
the CP/M system is brought in from disk A, and the CCP displays the
message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages,
and m.m is the CP/M version number. All CP/M systems are initially set to
operate in a 16K memory space, but can be easily reconfigured to fit any
memory size on the host system. Following system signon, CP/M automat-
ically logsin disk A, prompts the user with thesymbol “A>" (indicating that
CP/M is currently addressing disk “A”), and waits for a command. The
commands are implemented at two levels: built-in commands and transient
commands.

General Command Structure

Built-in commands are a part of the CCP program itself, while transient
commands are loaded into the TPA from disk and executed. The built-in
commands are

ERA Erase specified files.

DIR Displays file names in the directory.
3-6

N

REN Rename the specified file.

SAVE Save memory contents in a file.
TYPE Type the contents of a file on the logged disk.
USER Move to another area within the same directory.

Nearly all of the commands reference a particular file or group of files. The
form of a file reference is specified below.

File References

A file reference identifies a particular file or group of files on a particular disk
attached to CP/M. These file references can be either “unambiguous” (ufn)
or “ambiguous” (afn). An unambiguous file reference uniquely identifies a
single file, while an ambiguous file reference may be satisfied by a number of
different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary name is optional, it usually is generic; that is,
the secondary name “ASM’ for example, is used to denote that the fileisan
assembly language source file, while the primary name distinguishes each

“»

particular source file. The two names are separated by a “.” asshown below:

PPPPPPPP-858

where pppppppp represents the primary name of eight characters or less, and
sss is the secondary name of no more than three characters. As mentioned
above, the name

PPPPPPPP

is also allowed and is equivalent to a secondary name consisting of three
blanks. The characters used in specifying an unambiguous file reference
cannot contain any of the special characters

<>.,;:=7?7*[]

while all alphanumerics and remaining special characters are allowed.

An ambiguous file reference is used for directory search and pattern
matching. The form of an ambiguous file reference is similar to an
unambiguous reference, except the symbol “?” may be interspersed
throughout the primary and secondary names. In various commands
throughout CP/M, the “?” symbol matches any character of a file name in
the “?” position. Thus, the ambiguous reference

3-7

X?Z.C’'M

is satisfied by the unambiguous file names

XYZ.COM
and

X3Z.CAM
Note that the ambiguous reference

* . *

is equivalent to the ambiguous file reference

72772772.277
while

ppppPPPDP.*
and

*.sss
are abbreviations for
pppppppp.???

and

72277722 588
respectively. As an example,

DIR **
is interpreted by the CCP as a command to list the names of all disk files in
the directory, while
DIR X.Y
searches only for a file by the name X.Y. Similarly, the command
DIR X?Y.C?M N

causes a search for all (unambiguous) file names on the disk which satisfy this
ambiguous reference.

The following file names are valid unambiguous file references:

X XYZ GAMMA
XY XYZ.COM GAMMA.

As an added convenience, the programmer can generally specify the disk
drive name along with the file name. In this case, the drive name is given as
aletter A through Z followed by a colon (:). Thespecified driveis then “logged
in” before the file operation occurs. Thus, the following are valid file names
with disk name prefixes:

A:XY B:XYZ C:GAMMA
Z:XYZ.COM B:X.A’M C:*.ASM

It should also be noted that all alphabetic lower case lettersin file and drive
names are always translated to upper case when they are processed by the
CCP.

Switching Disks

The operator can switch the currently logged disk by typing the disk drive
name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console input. Thus, the sequence of prompts and commands shown below
might occur after the CP/M system is loaded from disk A:

16K CP/M VER 14

A>DIR List all files on disk A.
SAMPLE ASM

SAMPLE PRN

A>B: Switch to disk B.

B>Dir *.ASM List all “ASM” files on B.
DUMP ASM

FILES ASM

B>A: Switch back to A.

Form of Built-In Commands

The file and device reference forms described above can now be used to fully
specify the structure of the built-in commands. In the description below,
assume the following abbreviations:

ufn unambiguous file reference
afn ambiguous file reference
cr carriage return

Further, recall that the CCP always translates lower case characters to

3-9

upper case charactersinternally. Thus, lower case alphabetics are treated as
if they are upper case in command names and file references.

ERAse Command
ERA afn

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the “>"). The
files which are erased are those which satisfy the ambiguous file reference
afn. The following examples illustrate the use of ERA:

ERA XY The file named X.Y on the currently logged disk
isremoved from the disk directory, and the space
is returned.

ERA X.* All files with primary name X are removed from
the current disk.

ERA *.ASM All files with secondary name ASM are removed
from the current disk.

ERA X?Y.C?’M All files on the current disk which satisfy the
ambiguous reference X?Y.C?M are deleted.

ERA *.* Erase all filesin the current user’s directory. (See
USER n, page 13.) The CCP prompts with the
message

ALL (Y/N)?
which requires a Y response before files are
actually removed.

ERA B:*.PRN All files on drive B which satisfy the ambiguous

dently of the currently logged disk.

DIRectory Command
DIR afn

The DIR (directory) command causes the names of all files which satisfy the
ambiguous file name afn to be listed at the console device. As a special case,
the command

DIR

lists the files on the currently logged disk (the command “DIR” isequivalent
to the command “DIR *.*”). Valid DIR commands are shown below.

3-10

DIR X.Y
DIR X?Z.C?’M
DIR 72.Y

Similar to other CCP commands, the afn can be preceded by a drive name.
The following DIR commands cause the selected drive to be addressed before
the directory search takes place.

DIR B:
DIR B:X.Y
DIR B:* A’M

If no files can be found on the selected diskette which satisfy the directory
request, then the message “NOT FOUND” is typed at the console.

REName Command
REN ufn2 = ufnl

The REN (rename) command allows the user to change the names of fileson
disk. The file satisfying ufn2 is changed to ufnl. The currently logged disk is
assumed to contain the file to rename (ufnl). The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user’s console
supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.

REN XYZ.COM=XYZXXX The file XYZ.XXX is changed to
XYZ.COM.

The operator can precede either ufnl or ufn2 (or both) by an optional drive
address. Given that ufnl is preceded by a drive name, then ufn2 is assumed
to exist on the same drive as ufnl. Similarly, if ufn2 is preceded by a drive
name, then ufnl is assumed to reside on that drive as well. If both ufn1 and
ufn2 are preceded by drive names, then the same drive must be specified in
both cases. The following REN commands illustrate this format.

REN A:X.ASM = Y.ASM The file Y.ASM is changed to X.ASM
on drive A.

REN B:ZAPBAS=Z0OT.BAS The file ZOT.BAS is changed to
ZAPBAS on drive B.

3-11

REN B:A.ASM = B:A.BAK The file A.BAK is renamed to A.ASM
on drive B.

If the file ufnl is already present, the REN command will respond with the
error “FILE EXISTS” and not perform the change. If ufn2 does not exist on
the specified diskette, then the message “NOT FOUND” is printed at the
console.

SAVE Command
SAVE n ufn

The SAVE command places n pages (256-byte blocks) onto disk from the
TPA and names this file ufn. In the CP/M distribution system, the TPA
starts at 100H (hexadecimal), which is the second page of memory. Thus, if
the user’s program occupies the area from 100H through 2FFH, the SAVE
command must specify two pages of memory. The machine code file can be
subsequently loaded and executed. Examples are:

SAVE 3 X.COM Copies 100H through 3FFH to
X.COM.
SAVE 40 Q Copies 100H through 28FFH to Q

(note that 28 is the page count in
28FFH, and that 28H = 2*16+8 =
40 decimal).

SAVE 4 XY Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below.

SAVE 10 B:ZOT.COM Copies 10 pages (100H through
0AFFH) to the file ZOT.COM on

drive B.

The SAVE operation can be used any number of times without altering the
memory image.

TYPE Command
TYPE ufn

The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device. Valid TYPE commands are

TYPE XY
3-12

TN

TYPE X.PLM
TYPE XXX

The TYPE command expands tabs (clt-I characters), assuming tab
positions are set at every eighth column. The ufn can also reference a drive
name as shown below.

TYPE B:X.PRN The file X.PRN from drive B is displayed.
USER Command
USERn

Where n is an integer value in the range 0 to 15.

Upon cold start, the operator is automatically “logged” into user area
number 0. The operator may issue the USER command at any time to move
to another logical area within the same directory.

Drives which are logged in while addressing one user number are automat-
ically active when the operator moves to another user number since a user
number is simply a prefix which accesses particular directory entries on the
active disks.

The active user number is maintained until changed by a subsequent USER
command, or until a cold start operation when user 0 is again assumed.

Line Editing and Output Control

The CCP allows certain line editing functions while typing command lines.
“Control” indicates that the Control key and the indicated key are to be
pressed simultaneously. CCP commands can generally be up to 255
characters in length; they are not acted upon until the carriage return key
is pressed.

rubout/delete Remove and echo last character typed

Control C Reboot CP/M when at beginning of line

Control E Physical end of line: carriageis returned, but line
is not sent until the carriage return key is
depressed.

3-13

Control H

Control J

Control M

Control R

Control X

Backspace one character position. Produces the
backspace overwrite function. Can be changed
internally to another character, such as delete,
through a simple single byte change.

Line feed. Terminates current input.
Carriage return. Terminates input.
Retype current command line after new line.

Backspace to beginning of current line.

The line editor keeps track of the current prompt column position so that the
operator can properly align data input following a Control R or Control X

command.

The control functions Control P and Control S affect console output as

shown below.

Control P

Control S

Copy all subsequent console output to the
currently assigned list device (see the STAT
command). Output is sent to both the list device
and the console device until the next Control Pis
typed.

Stop the console output temporarily. Program
execution and output continue when the next
character is typed at the console (e.g., another
Control S). This feature is used to stop output on
high speed consoles, such as CRT’s, in order to
view a segment of output before continuing.

Transient Commands

Transient commands are loaded from the currently logged disk and executed
in the TPA. The transient commands defined for execution under the CCP
are shown below. Additional functions can easily be defined by the user (see
the LOAD command definition).

STAT

ASM

List the number of bytes of storage remaining on
the currently logged disk, provide statistical
information about particular files, and display or
alter device assignment.

Load the CP/M assembler and assemble the
specified program from disk.

3-14

T

LOAD Load the file in Intel “hex” machine code format
and produce a file in machine executable form
which can be loaded into the TPA (this loaded
program becomes a new command under the

CCP).

DDT Load the CP/M debugger into TPA and start
execution.

PIP Load the Peripheral Interchange Program for
subsequent disk file and peripheral transfer
operations.

ED Load and execute the CP/M texteditor program.

SUBMIT Submit a file of commands for batch processing.

DUMP Dump the contents of a file in hex.

Transient commands arespecifiedin thesame manner asbuilt-in commands,
and additional commands can be easily defined by the user. As an added
convenience, the transient command can be preceded by adrivename, which
causes the transient to be loaded from the specified drive into the TPA for
execution. Thus, the command

B:STAT

causes CP/M to temporarily “log in” drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing.

The basic transient commands are listed in detail below.

STAT
The STAT command provides general statistical information about file
storage and device assignment. It is initiated by typing one of the following
forms:

STAT
STAT “command line”

Special forms of the “command line” allow the current device assignment to
be examined and altered as well. The various command lines which can be
specified are shown below, with an explanation of each form shown to the
right.

3-15

STAT {cr}

STAT x: {cr)

STAT afn {cr)

STAT x:afn {cr)

If the user types an empty command line, the
STAT transient calculates the storage remaining
on all active drives, and prints a message

x: R/W, SPACE: nnnK
or

x: R/0, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/0O by
explicitly setting it to read only, as shown below,
or by inadvertently changing diskettes without
performing a warm start). The space remaining
on the diskette in drive x is given in kilobytes by
nnn.

If a drive name is given, then the drive is selected
before the storage is computed. Thus, the com-
mand “STAT B:” could be issued while logged
into drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can also specify aset of filesto
be scanned by STAT. The files which satisfy afn
are listed in alphabetical order, with storage
requirements for each file under the heading

RECS BYTS EX D:FILENAME.TYP
IrIr bbbK ee d:ppppPPPPp-Sss

where rrrr is the number of 128-byte records
allocated to the file, bbb is the number of
kilobytes allocated to the file
(bbb =r111*128/1024), e¢ is the number of 16K
extensions (ee=bbb/16), d is the drive name
containing thefile (A...Z), ppppppppisthe (up to)
eight-character primary file name, and sss is the
(up to) three-character secondary name. After
listing the individual files, the storage usage is
summarized.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified drive
is first selected, and the form “STAT afn” is
executed.

3-16

STAT d:filename.typ $S {cr) :

(“d:” is optional drive
name and “filename.typ”
is an unambiguous or
ambiguous file name)

Produces the output display format:

Size Recs Bytes Ext Acc

48 48 6K 1 R/0A:ED.COM

55 55 12K 1 R/O(A:PIP.COM)
65536 128 2K 2 R/W A:X.DAT
The $S parameter causes the “Size” field to be
displayed. (The command may be used without
the $S if desired.) The Size field lists the virtual
file sizein records, while the “Recs” field sums the
number of virtual recordsin each extent. For files
constructed sequentially, the Size and Recs
fields are identical. The “Bytes” field lists the
actual number of bytes allocated to the corre-
sponding file. The minimum allocation unit is
determined at configuration time, and thus the
number of bytes corresponds to the record count
plus the remaining unused space in the last
allocated block for sequential files. Random
access files are given data areas only when
written, so the Bytes field contains the only
accurate allocation figure. In the case of random
access, the Size field gives the logical end-of-file
record position and the Recs field counts the
logical records of each extent (each of these
extents, however, may contain unallocated
“holes” even though they are added into the
record count). The “Ext” field counts the
number of local 16K extents allocated to the file.
The “Acc” field gives the R/O or R/W access
mode, which is changed using the commands
shown below. The parenthesesshown around the
PIP.COM file name indicate that it has the
“system” indicator set, so that it will not be listed
in DIR commands.

STAT d:filename.typ $R/O (cr)

Places the file or set of files in a read-only status
until changed by a subsequent STAT command.
The R/0 status is recorded in the directory with
the file so that it remains R/O through inter-
vening cold start operations. When a file is
marked R/0, attempts to erase or write into the
file result in a terminal BDOS message: Bdos Err
on D: File R/0.

STAT d:filename.typ $R/W (cr)

Places the file in a permanent read/write status.

317

STAT d:filename.typ $SYS {cr)

Attaches the system mdlcator to the file.

STAT d:filename.typ $DIR (cr)

STAT d:DSK: {cr)

STAT DSK: {cr)

STAT USR: {cr)

Removes the system indicator from the file.

Lists the drive characteristics of the disk named
by “d:” which is in the range A:, B:, ..., P:. The
drive characteristics are listed in the format

d: Drive Characteristics

65536: 128 Byte Record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
0: Checked Directory Entries
1024: Records/Extent
128: Records/Block
58: Sectors/Track

2: Reserved Tracks
The total record capacity is listed, followed by
the total drive capacity listed in Kbytes. The
number of checked entries is usually identical to
the directory size for removable media, since this
mechanism is used to detect changed media
during CP/M operation without an intervening
warm start. The number of records per extent
determines the addressing capacity of each
directory entry (1024 times 128 bytes, or 128K in
the example above). The number of records per
block shows the basic allocation size (in the
example, 128 records/block times 128 bytes per
record, or 16K bytes per block). The listingis then
followed by the number of physical sectors per
track and the number of reserved tracks.

Lists drive characteristics as above for all
currently active drives.

Produces a list of the user numbers which have
files on the currently addressed disk. The display
format is:

Active User : 0

Active Files: 01 3
where the first line lists the currently addressed
user number, as set by the last CCP USER |,
command, followed by a list of user numbers
scanned from the current directory. In the above
case, the active user number is 0 (default at cold
start), with three user numbers which have

3-18

active files on the current disk. The operator can
subsequently examine the directories of the
other user numbers by logging in with USER 1,
USER 2, or USER 3 commands, followed by a
DIR command at the CCP level.

The STAT command also allows control over the physical to logical device
assignment (see the IOBYTE function described in the “CP/M Interface
Guide” In general, there are four logical peripheral devices which are, at any
particular instant, each assigned to one of several physical peripheral
devices. The four logical devices are named:

CON:

RDR:

PUN:

LST:

The system console device (used by CCP for
communication with the operator)

The paper tape reader device
The paper tape punch device

The output list device

The actual devices attached to any particular computersystem are driven by
subroutines in the BIOS portion of CP/M. Thus, thelogical RDR: device, for
example, could actually be a high speed reader, Teletype reader, or cassette
tape. In order to allow some flexibility in device naming and assignment,
several physical devices are defined, as shown below:

TTY:

CRT:

BAT:

UC1:

PTR:

URL:

UR2:

PTP:

UPIL:

Teletype device (slow speed console)
Cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output goes to current LST: device)

User-defined console

Paper tape reader (high speed reader)
User-defined reader #1

User-defined reader # 2

Paper tape punch (high speed punch)

User-defined punch #1
3-19

UP2: User-defined punch #2
LPT: Line printer

UL1: User-defined list device #1

It must be emphasized that the physical device names may or may not
actually correspond to devices which the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and driving subroutine is defined in the BIOS
portion of CP/M. In the standard distribution version of CP/M, these
devices correspond to their names on the MDS 800 development system.

The command:

STAT VAL: {cr)

produces a summary of the available status commands, resulting in the
output:

Temp R/0 Disk: d:=R/0

Set Indicator: d:filename.typ $R/O $R/W $SYS $DIR

Disk Status: DSK: d:DSK:
User Status: USR:
Iobyte Assign:

CON. =TTY: CRT: BAT: UCL
RDR: = TTY: PTR: URLl: UR2:
PUN: = TTY: PTP: UPL: UP2:
LST: = TTY: CRT: LPT: ULL

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line. The current logical to
physical mapping is displayed by typing the command

STAT DEV: {cr)

which produces a listing of each logical device to the left, and the current -
corresponding physical device to the right. For example, the list might
appear as follows:

3-20

CON: = CRT:

RDR: = URL:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing
a STAT command of the form

STAT Id1 = pd1,1d2 = pd2, ..., ldn = pdn {cr)

where 1d1 through ldn are logical device names, and pdl through pdn are
compatible physical device names (i.e., 1di and pdi appear on the same linein
the “VAL:” command shown above). The following are valid STAT
commands which change the current logical to physical device assignments:

STAT CON: = CRT: {cr)
STAT PUN: = TTY:,LST: = LPT:,RDR: = TTY: (cr)

ASM ufn

The ASM command loads and executes the CP/M 8080 assembler. The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The
following ASM commands are valid:

ASM X
ASM GAMMA

The two-pass assembler is automatically executed. If assembly errors occur
during the second pass, the errors are printed at the console.

The assembler produces a file
x.PRN

where x is the primary name specified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if
present in the source program), along with the machine code generated for
each statement and diagnostic error messages, if any. The PRN file can be
listed at the console using the TYPE command, or sent to a peripheral device
using PIP (see the PIP command structure below). Note also that the PRN
file contains the original source program, augmented by miscellaneous
assembly information in the leftmost 16 columns (program addresses and
hexadecimal machine code, for example). Thus, the PRN file can serve as a

3-21

backup for the original source file: if the source file is accidentally removed
or destroyed, the PRN file can be edited (see the ED operator’s guide) by
removing the leftmost 16 characters of each line (this can be done by issuing
a single editor “macro” command). The resulting file is identical to the
original source file and can be renamed (REN) from PRN to ASM for
subsequent editing and assembly. The file

x.HEX

isalso produced which contains 8080 machine languagein Intel “hex” format
suitable for subsequent loading and execution (see the LOAD command).
For complete details of CP/M’s assembly language program, see the “CP/M
Assembler Language (ASM) User’s Guide””

Similar to other transient commands, the source file for assembly can be
taken from an alternate disk by prefixing the assembly language file name by
a disk drive name. Thus, the command

ASM B:ALPHA (cr)

loads the assembler from the currently logged drive and operates upon the
source program ALPHA.ASM on drive B. The HEX and PRN files are also
placed on drive B in this case.

LOAD ufn cr

The LOAD command reads the file ufn, which is assumed to contain “hex”
format machine code, and produces a memory image file which can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command. The LOAD
command creates a file named

x.COM

which marks it as containing machine executable code. The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character “>” printed by the CCP.

In general, the CCP reads the name x following the prompting character and
looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

3-22

ST

x.COM

~~ Iffound, the machine codeis loaded into the TPA, and the program executes.
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this
way, the user can “invent” new commands in the CCF. (Initialized disks
contain the transient commands as COM files, which can be deleted at the
user’s option.) The operation can take place on an alternate drive if the file
name is prefixed by a drive name. Thus

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for
example) which begin at 100H, the beginning of the TPA. Further, the
addresses in the hex records must be in ascending order; gaps in unfilled
memory regions are filled with zeroes by the LOAD command as the hex
recordsareread. Thus, LOAD must be used only for creating CP/M standard
“COM” files which operate in the TPA. Programs which occupy regions of
memory other than the TPA can be loaded under DDT.

PIP

PIP is the CP/M Peripheral Interchange Program which implements the
basic media conversion operations necessary to load, print, punch, copy, and
combine disk files. The PIP program is initiated by typing one of the
following forms

PIP (cr)
PIP “command line” {cr)

In both cases, PIP is loaded into the TPA and executed. In case 1, PIP reads
command lines directly from the console, prompted with the “*” character,
until an empty command line is typed (i.e., a single carriage return is issued
by the operator). Each successive command line causes some media
conversion to take place according to the rules shown below. Form 2 of the
PIP command is equivalent to the first, except that the single command line

~—~ given with the PIP commandis automatically executed, and PIP terminates
immediately with no further prompting of the console for input command
lines. The form of each command line is

destination = source #1, source #2, ..., source #n {cr)

3-23

where “destination” is the file or peripheral device to receive the data, and
“source#1, ..., source #n” represents a series of one or more files or devices
which are copied from left to right to the destination.

When multiple files are given in the command line (i.e., n > 1), the individual
files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assumption). The equal symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to
improvereadability. Lower case ASCII alphabetics areinternally translated
to upper case to be consistent with CP/M file and device name conventions.
Finally, the total command line length cannot exceed 255 characters (ctl-E
can be used to force a physical carriage return for lines which exceed the
console width).

The destination and source elements can be unambiguous references to
CP/M source files, with or without a preceding disk drive name. That is, any
file can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
thedrive nameis not included, the currently logged disk is assumed. Further,
the destination file can also appear as one or more of the source files, in which
case the source file is not altered until the entire concatenation is complete.
If the destination file already exists, it is removed if the command line is
properly formed (it is not removed if an error condition arises). The following
command lines (with explanations to the right) are valid as input to PIP:

X =Y (er) Copy to file X from file Y, where X and
Y are unambiguous file names; Y
remains unchanged.

X =Y,Z{cr) Concatenate files Y and Z and copy to
file X, with Y and Z unchanged.

X.ASM = Y.ASM,Z.ASM,FIN.ASM (cr)
Create the file X.ASM from the con-
catenation of the Y, Z, and FIN files
with type ASM.

NEW.ZOT = B:OLD.ZAP (cr) Move a copy of OLD.ZAP from drive B
to the currently logged disk; name the
file NEW.ZOT.

B:A.U. = B:BV,A:C.W,D.X (cr) Concatenate file B.V from drive B with
C.W from drive A and D.X. from the
logged disk; create the file A.U on drive
B.

3-24

Formore convenient use, PIP allows abbreviated commands for transferring
files between disk drives. The abbreviated forms are

PIP x: = afn {cr)
PIP x: = y:afn {(cr)
PIP ufn = y: {cr)
PIP x:ufn = y: {cr)

The first form copies all files from the currently logged disk which satisfy the
afn to the same file names on drive x (x = A...Z). The second form is
equivalent to the first, where the source for the copyisdrivey (y = A...Z). The
third form is equivalent to the command “PIP ufn = y:ufn {cr)” which
copies the file given by ufn from drive y to the file ufn on drive x. The fourth
form is equivalent to the third, where the source disk is explicitly given by y.

Note that the source and destination disks must be different in all of these
cases. If an afn is specified, PIP lists each ufn which satisfies the afn as it is
being copied. If a file exists by the same name as the destination file, it is
removed upon successful completion of the copy, and replaced by the copied
file.

The following PIP commands give examples of valid disk-to-disk copy
operations:

B: = *.COM (cr) Copy all files which have the secondary name
“COM?” to drive B from the current drive.

A: = B:ZAP* (cr) Copy all files which have the primary name
“ZAP” to drive A from drive B.

ZAPASM = B: (cr) Equivalent to ZAP.ASM = B:ZAPASM

B:ZOT.COM = A: {cr) Equivalent to B:ZOT.COM =A:ZOT.COM
B: = GAMMA BAS (cr) Same as B.GAMMA.BAS=GAMMA.BAS

B: = A:GAMMA.BAS (cr) Same as
B:GAMMA.BAS=A:GAMMA.BAS

PIP also allows reference to physical and logical devices which are attached
to the CP/M system. The device names are thesame as given under the STAT
command, along with a number of specially named devices. The logical

3-26

devices given in the STAT command are
CON:: (console), RDR: (reader), PUN: (punch), and LST: (list)
while the physical devices are

TTY: (console, reader, punch, or list)

CRT: (console, or list), UC1: (console
PTR: (reader), URI: (reader), URZ2: (reader)
PTP: (punch), UPIL (punch), UP2: (punch)
LPT: (list), UL1: (list)

(Note that the “BAT:” physical device is not included, since this assignment
is used only to indicate that the RDR: and LST: devices are to be used for
console input/output.)

The RDR, LST, PUN, and CON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular I/0 system.
(The current physical device mapping is defined by IOBYTE; see the
“CP/M Interface Guide” for a discussion of this function). The destination
device must be capable of receiving data (i.e., data cannot be sent to the
punch), and the source devices must be capable of generating data (i.e., the
LST: device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 40 “nulls” (ASCII 0’s) to the device (this can be issued at the
end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the destination device
(sent automatically at the end of all ASCII data transfers through
PIP).

INP: Special PIP input source which can be “patched” into the PIP
program itself: PIP gets the input data character-by-character by
CALLing location 103H, with data returned in location 109H
(parity bit must be zero).

OUT: Special PIP output destination which can be patched into the PIP
program: PIP CALLslocation 106H with data in register C for each
character to transmit. Note that locations 109H through 1FFH of
the PIP memory image are not used and can be replaced by special
purpose drivers using DDT (see the DDT operator’s manual).

PRN: Same as LST:, except that tabs are expanded at every eighth
3-26

character position, lines are numbered, and page ejects areinserted
every 60 lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands. In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files, and a
real end of file for non-ASCII disk files). Data from each device or file is
concatenated from left to right until the last data source has been read. The
destination device or file is written using the data from the source files, and
an end-of-file character (ctl-Z)is appended to the result for ASCII files. Note
that if the destination is a disk file, a temporary fileis created ($$$ secondary
name) which is changed to the actual file name only upon successful
completion of the copy. Files with the extension “COM” are always assumed
to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on the
keyboard (a rubout suffices). PIP will respond with the message
“ABORTED” to indicate that the operation was not completed. Note that
if any operation is aborted, or if an error occurs during processing, PIP
removes any pending commands which were set up while using the SUBMIT
command.

Itshould also be noted that PIP performsa special functionif the destination
is a disk file with type “HEX” (an Intel hex formatted machine code file),
and the source is an external peripheral device, such as a paper tape reader.
In this case, the PIP program checks to ensure that the source file contains
a properly formed hex file, with legal hexadecimal values and checksum
records. When an invalid input record is found, PIP reports an error message
at the console and waits for corrective action. It is usually sufficient to open
the reader and rerun a section of the tape (pull the tape about 20 inches).
When the tape is ready for the re-read, type a single carriage return at the
console, and PIP will attempt another read. If the tape position cannot be
properly read, simply continue the read (by typing a return following the
error message), and enter the record manually with the ED program after
the disk file is constructed. For convenience, PIP allows the end-of-file to be
entered from the console if the source file is a RDR: device. In this case, the
PIP program reads the device and monitors the keyboard. If ctl-Z is typed
at the keyboard, then the read operation is terminated normally.

Valid PIP commands are shown below.

PIP LST: = X.PRN {(cr) Copy X.PRN to the LST device and termin-
ate the PIP program. '

PIP {cr) Start PIP for a sequence of commands (PIP
prompts with “*”),

3-27

*CON: = X.ASM,Y.ASM,Z.ASM {(cr)
Concatenate three ASM files and copy to the
CON device.

*X.HEX = CON:,Y.HEX,PTR: {cr)
Create a HEX file by reading the CON (until
a ctl-Z is typed), followed by data from
Y.HEX, followed by data from PTR until a
ctl-Z is encountered.

*(cr)y Single carriage return stops PIP.

PIP PUN: = NUL:,X.ASM,EOF: NUL: (cr)
: Send 40 nulls to the punch device; then copy
the X.ASM file to the punch, followed by an
end-of-file (ctl-Z) and 40 more null
characters.

The user can also specify one or more PIP parameters, enclosed in left and
right square brackets, separated by zero or more blanks. Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be followed by an optional decimalinteger value (the S and Q parametersare
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII x-off
character (ctl-S) is received from the source device. This allows
transfer of data to a disk file from a continuousreading device, such
as a cassette reader. Upon receipt of the x-off, PIP clears the disk
buffers and returns for more input data. The amount of data which
can be buffered is dependent upon the memory size of the host
system (PIP will issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer of
data to the destination from the character source. This parameter
isused most often to truncate longlines which aresent to a (narrow)
printer or console device.

E Echo all transfer operations to the console as they are being
performed.

F Filter form feedsfrom the file. Allimbedded form feeds are removed.
The P parameter can be used simultaneously to insert new form
feeds.

Gn Get file from user number n. (n is the range 0-15.) Allows one user

areatoreceive data files from another. If the operator hasissued the

3-28

Pn

Qslz

Sstz

USER 4 command at the CCP level, the PIP statement

PIP X.Y = X.Y[G2]
reads file X.Y from user number 2 into user area number 4. You
cannot copy files into a different area than the one which is
currently addressed by the USER command.

Hex data transfer: all data is checked for proper Intel hex file
format. Non-essential characters between hex records are removed
during the copy operation. The console will be prompted for
corrective action in case errors occur.

Ignore “:00” records in the transfer of Intel hex format file (the I
parameter automatically sets the H parameter).

Translate upper case alphabetics to lower case.

Add line numbers to each line transferred to the destination,
starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2is specified,
then leading zeroes are included, and a tab is inserted following the
number. The tab is expanded if T is set.

Object file (non-ASCII) transfer: the normal CP/M end of file is
ignored.

Include page ejects at every n lines (with an initial page eject). If n
= 1 oris excluded altogether, page ejects occur every 60 lines. If the
F parameter is used, form feed suppression takes place before the
new page ejects are inserted.

Quit copying from the source device or file when the string s
(terminated by ctl-Z) is encountered.

Read system files. Allows files with the system attribute to be
included in PIP transfers. Otherwise, system files are not
recognized.

Start copying from the source device when the string s is
encountered (terminated by ctl-Z). The S and Q parameters can be
used to “abstract” a particular section of a file (such as a
subroutine). The start and quit strings are always included in the
copy operation.

NOTE — thestrings following thesand q parameters are translated
to upper case by the CCP if form (2) of the PIP command is used.
Form (1) of the PIP invocation, however, does not perform the

3-29

automatic upper case translation.
(1) PIP (cr)
(2) PIP “command line” {cr)

Tn Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the copy
operation.

A% Verify that data has been copied correctly by rereading after the
write operation (the destination must be a disk file).

w Write over R/O files without console interrogation. Under normal
operation, PIP will not automatically overwrite a file which is set
to a permanent R/O status. It advises the user of the R/0 status
and waits for overwrite approval. W allows the user to bypass this
interrogation process.

V/ Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.ASM = B:[v]{cr) Copy X.ASM from drive B to the current
drive and verify that the data was properly
copied.

PIP LPT: = X.ASM[nt8u] {cr)
Copy X.ASM to the LPT: device; number
each line, expand tabs to every eighth column,
and translate lower case alphabetics to upper
case.

PIP PUN: = X.HEX([i],Y.ZOT[h] {cr)
First copy X.HEX to the PUN: device and
ignore the trailing “:00” record in X.HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any “:00” records which it contains.

PIP X.LIB = Y.ASM [sSUBRI1:tz qJMP L3tz] {cr) ™
Copy from the file Y. ASM into the file X.LIB.
Start the copy when the string “SUBR1:” has
been found, and quit copying after the string
“JMP L3” is encountered.

3-30

PIP PRN: =X ASM[p50] Send X.ASM to the LST: device, with line
numbers, tabs expanded to every eighth
column, and page ejects at every 50th line.
Note that nt8p60 is the assumed parameter
list for a PRN file; p50 overrides the default
value.

Note that the PIP program itself is initially copied to a user area (so that
subsequent files can be copied) using the SAVE command. The sequence of
operations shown below effectively moves PIP from one user area to the
next.

USER 0 login user 0

DDT PIP.COM load PIP in memory
(note PIP size s)

GO return to CCP
USER 3 login user 3

SAVE s PIP.com

where s is the integral number of memory “pages” (256 byte segments)
occupied by PIP. The number s can be determined when PIP.COM is located
under DDT, by referring to the value under the “NEXT” display. If for
-example, the next available address is 1D00, then PIP.COM requires 1C
hexadecimal pages (or 1 times 16 + 12 =28 pages), and thus the value of sis 28
in the subsequent save. Once PIP is copied in this manner, it can then be
copied to another disk belonging to the same user number through normal
PIP transfers,

ED

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment. Complete details of
operation are given in Chapter 3 CP/M ED. In general, ED allows the
operator to create and operate upon source files which are organized as a
sequence of ASCII characters, separated by end-of-line characters (a
carriage-return line-feed sequence). There is no practical restriction on line
length (no single line can exceed the size of the working memory), which is
instead defined by the number of characters typed between {cr)’s. The ED
program has a number of commands for character string searching,
replacement, and insertion, which are useful in the creation and correction
of programs or text files under CP/M. Although the CP/M has a limited
memory work space area (approximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is easily
“paged” through this work area.

Upon initiation, ED creates the specified source file, if it does not exist, and
opens the file for access. The programmer then “appends” data from the

3-31

source file into the work area, if the source file already exists (see the A
command), for editing. The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of
a large file.

Given that the operator has typed
ED X.ASM {cr)
the ED program creates an intermediate work file with the name

X.5%8

to hold the edited data during the ED run. Upon completion of ED, the
X.ASM file (original file) is renamed to X.BAK, and the edited work file is
renamed to X.ASM. Thus, the X.BAK file contains the original (unedited)
file, and the X.ASM file contains the newly edited file. The operator can
always return to the previous version of a file by removing the most recent
version, and renaming the previous version. Suppose, for example, that the
current X.ASM file was improperly edited; the sequence of CCP commands
shown below would reclaim the backup file.

DIR X.* Check to see that BAK file is available.
ERA X.ASM Erase most recent version.

REN X.ASM=X.BAK Rename the BAK file to ASM.

Note that the operator can abort the edit at any point (reboot, power failure,
¢ctl-C, or Q command) without destroying the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to “ping-pong” the source and create
backup files between two disks. The form of the ED command in this case is

EDufnd:

where ufn is the name of a file to edit on the currently logged disk and d is the —
name of an alternate drive. The ED program reads and processes the
source file, and writes the new file to drive d, using the name ufn. Upon
completion of processing, the original file becomes the backup file. Thus, if
the operator is addressing disk A, the following command is valid:

3-32

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file X.$$$ on drive
B. Upon completion of a successful edit, A:X.ASM isrenamed to A:X.BAK,
and B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently
logged disk becomes drive B at the end of the edit. Note that if a file by the
name B:X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against accidentally destroying a
source file. In this case, the operator must first ERAse the existing file and
then restart the edit operation.

Similar to other transient commands, editing can take place on a drive
different from the currently logged disk by preceding the source file name by
a drive name. Examples of valid edit requests are shown below

ED A:X.ASM Edit the file X.ASM on drive A, with new fileand
backup on drive A.
ED B:X.ASM A: Edit the file X.ASM on drive B to the temporary

file X.$$$ on drive A. On termination of editing,
change X.ASMondrive B to X.BAK, and change
X.$$$ on drive A to X.ASM.

ED takes file attributes into account. If the operator attempts to edit a
read/only file, the message

FILE IS READ/ONLY

appears at the console. The file can be loaded and examined, but cannot be
altered in any way. Normally the operator simply ends the edit session, and
uses STAT to change the file attribute to R/W. If the edited file has the
system attribute set, the message

“SYSTEM” FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again, the STAT
program can be used to change the system attribute if desired.

SUBMIT
The SUBMIT command allows CP/M commands to be batched together for

3-33

automatic processing. The format of SUBMIT is: SUBMIT ufn
parm #1...parm #n{cr).

The ufn given in the SUBMIT command must be the filename of a file which
exists on the currently logged disk, with an assumed file type of “SUB?’ The
SUB file contains CP/M prototype commands, with possible parameter
substitution. The actual parameters parm #1 ... parm #n are substituted
into the prototype commands, and, if no errors occur, the file of substituted
commands is processed sequentially by CP/M.

The prototype command file is created using the ED program, with
interspersed “$” parameters of the form

$1 $2 $3 .. $n

corresponding to the number of actual parameters which will be included
when the file is submitted for execution. When the SUBMIT transient is
executed, the actual parameters parm #1 ... parm #n are paired with the
formal parameters $1 ...$n in the prototype commands. If the number of
formal and actual parametersdoes not correspond, then the submit function
is aborted with an error message at the console. The SUBMIT function
creates a file of substituted commands with the name

$$$.5UB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this command file is read by the CCP as a source of input, rather
than the console. If the SUBMIT function is performed on any disk other
than drive A, the commands are not processed until the disk is inserted into
drive A and the system reboots. Further, the user can abort command
processing at any time by typing a rubout when the command is read and
echoed. In this case, the $$$.SUB file is removed, and the subsequent
commands come from the console. Command processing is also aborted if the
CCP detects an error in any of the commands. Programs which execute
under CP/M can abort processing of command files when error conditions
occur by simply erasing any existing $$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, the user may type a
“$$” which reduces to a single “$” within the command file. Further, an
up-arrow symbol “1” may precede an alphabetic character x, which produces
a single ctl-x character within the file.

Thelast command in a SUB file can initiate another SUB file, thus allowing
chained batch commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype
3-34

commands

ASM $1

DIR $1.*

ERA *BAK

PIP $2: = $1.PRN
ERA $1.PRN

and the command
SUBMIT ASMBL X PRN (cr)

isissued by the operator. The SUBMIT programreads the ASMBL.SUB file,
substituting “X” for all occurrences of $1 and “PRN” for all occurrences of
$2, resulting in a $33.SUB file containing the commands

ASM X

DIR X.*

ERA * BAK

PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file which is on an alternate drive
by preceding the file name by a drive name. Submitted files are only acted
upon, however, when they appear on drive A. Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is inserted
in drive A.

XSUB
XSUB extends the power of the SUBMIT facility toinclude characterinput
during program execution as well as entering command lines. The XSUB

command is included as the first line of your submit file and, when executed,
self-relocates directly below the CCP.

All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 10) receive
their input directly from the submit file. For example, the file SAVER.SUB
could contain the submit lines:

3-35

XSUB

DDT

I$1.HEX

R

GO

SAVE 1 $2.COM

with a subsequent SUBMIT command:
SUBMIT SAVER XY

which substitutes X for $1 and Y for $2 in the command stream. The XSUB
program loads, followed by DDT which is sent the command lines
“IX.HEX” “R” and “G0”, thus returning to the CCP. The final command
“SAVE 1 Y.COM” is processed by the CCP.

The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate its presence. Subsequent submit
command streams do not require the XSUB, unless an intervening cold
start has occurred. Note that XSUB must be loaded after DESPOOL, if both

are to run simultaneously.

DUMP

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time, with
the absolute byte address listed to the left of each line in hexadecimal. Long
typeouts can be aborted by pushing the rubout key during printout. (The
source listing of the DUMP program is given in the “CP/M Interface Guide”
as an example of a program written for the CP/M environment.)

BDOS Error Messages

There are three error situations which the Basic Disk Operating System
intercepts during file processing. When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error
where x is the drive name, and “error” is one of the three error messages:
BAD SECTOR

SELECT
R/O

3-36

The “BAD SECTOR” message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media. You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer.
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats. The MDS-800 controller, for
example, requires two bytes of one’s following the data CRC byte, which is
not required in the IBM format. As a result, diskettes generated by the Intel
MDS can be read by almost all other IBM-compatible systems, while disk
files generated on other manufacturers’ equipment will produce the “BAD
SECTOR” message when read by the MDS. In any case, recovery from this
condition is accomplished by typing a ctl-C to reboot (this is the safest!), or
a return, which simply ignores the bad sector in the file operation. Note,
however, that typing a return may destroy your diskette integrity if the
operation is a directory write, so make sure you have adequate backups in
this case.

The “SELECT” error occurs when there is an attempt to address a drive
beyond the A through Drange. In this case, the value of xin the error message
gives the selected drive. The system reboots following any input from the
console.

The R/O (read only) message occurs when there is an attempt to write to
a diskette which has been designated as read-only in a - STAT command,
or has been set to read-only by the BDOS. In general, the operator
should reboot CP/M either by using the warm start procedure ctl-C or
by performing a cold start whenever the diskettes are changed. If a
changed diskette is to be read but not written, BDOS allows the diskette
to be changed without the warm or cold start, but internally marks the
drive as read-only. The status of the drive is subsequently changed to
read/write if a warm or cold start occurs. Upon issuing this message,
CP/M waits for input from the console. An automatic warm start takes
place following any input.

3-37

3-38

CHAPTER 2
CP/M 2.0 INTERFACE GUIDE

 Introduction

* Operating System Call Conventions
» Sample File-to-File Copy Program

» Sample File Dump Utility

« Sample Random Access Program

» System Function Summary

Q.90

3-40

The transient program may use the CP/M 1/0 facilities to communicate
with the operator’s console and peripheral devices, including the disk
subsystem. The I/0 system is accessed by passing a “function number” and
an “information address” to CP/M through the FDOS entry point at
BOOT + 0005H. In the case of a disk read, for example, the transient program
sends the number corresponding to a disk read, along with the address of an
FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and
returns with either a disk read completion indication or an error number
indicating that the disk read was unsuccessful. The function numbers and
error indicators are given below.

Operating System Call Conventions

The purpose of this section is to provide detailed information for performing
direct operating system calls from user programs.

CP/Mfacilities which are available for access by transient programs fallinto
two general categories: simple device I/0, and disk file I70. The simple
device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character

Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

3-43

As mentioned above, access to the FDOS functions is accomplished by
passing a function number and information address through the primary
entry point at location BOOT + 0005H. In general, the function number is
passed in register C with theinformation addressin the double byte pair DE.
Single byte values are returned in register A, with double byte values
returned in HL (a zero value is returned when the function number is out of
range). For reasons of compatibility, register A =L and register B=H upon
returnin all cases. Note that the register passing conventions of CP/M agree
with those of Intel’s PL/M systems programming language. The list of
CP/M function numbers is given below.

0 System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console OQutput 21 Write Sequential
3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List Output 24 Return Login Vector
6 Direct Console 170 25 Return Current Disk
7 Get 170 Byte 26 Set DMA Address
8 Set I/0 Byte 27 Get Addr (Alloc)
9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/0 Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr (Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to maintain
upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to
an eight level stack area with the CCP return address pushed onto the stack,
leaving seven levels before overflow occurs. Although this stack is usually
not used by a transient program (i.e., most transients return to the CCP
through a jump to location 0000H), it is sufficiently large to make CP/M
system calls since the FDOS switches to a local stack at system entry. The
following assembly language program segment, for example, reads char-
acters continuously until an asterisk is encountered, at which time control
returns to the CCP (assuming a standard CP/M system with
BOOT + 0000H):

3-44

BDOS EQU 0005H ;STANDARD CP/M ENTRY

CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG 0100H ;BASE OF TPA

NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN (A)
CPI * ;END OF PROCESSING?
JNZ NEXTC ;LOOPIFNOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a logical
organization which allows any particular file to contain any number of
records from completely empty, to the full capacity of the drive. Each drive
is logically distinct with a disk directory and file data area. The disk file
names are in three parts: the drive select code, the file name consisting of one
to eight non-blank characters, and the file type consisting of zero to three
non-blank characters. The file type names the generic category of a
particular file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories which
have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/1 Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup

INT Intermediate Code SYM SID Symbol File
COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each “line”
of the source file is followed by a carriage-return line-feed sequence (0DH
followed by 0AH). Thus one 128 byte CP/M record could contain several
lines of source text. The end of an ASCII file is denoted by a control-Z
character (1AH) or a real end of file, returned by the CP/M read operation.
Control-Z characters embedded within machine code files (e.g., COM files)
areignored, however, and the end of file condition returned by CP/M is used
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128
bytes each, numbered from 0 through 65535, thus allowing a maximum of 8
megabytes per file. Note, however, that although the records may be
considered logically contiguous, they may not be physically contiguous in
the disk data area. Internally, all files are broken into 16K byte segments
called logical extents, so that counters are easily maintained as 8-bit values.
Although the decomposition into extents is discussed in the paragraphs
which follow, they are of no particular consequence to the programmersince
each extent is automatically accessed in both sequential and random access
modes.

3-45

In the file operations starting with function number 15, DE usually
addresses a file control block (FCB). Transient programs often use the
default file control block area reserved by CP/M at location BOOT + 005CH
(normally 005CH) for simple file operations. The basic unit of file —
information is a 128 byte record used for all file operations, thus a default
location for disk 1/0 is provided by CP/M at location BOOT + 0080H
(normally 0080H) which is theinitial default DM A address (see function 26).

All directory operations take place in a reserved area which does not affect
write buffers as was the case in release 1, with the exception of Search First

and Search Next, where compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33 bytes for
Sequential access and a series of 36 bytes in the case that the file is accessed
randomly. The default file control block normally located at 005CH can be
used forrandom access files, since the three bytesstarting at BOOT +007DH
are available for this purpose. The FCB format is shown with the following
fields:

[ar{n] el e]ufelelalsa]e]re]aol Ja]a[wo]a]e]

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
where
dr drive code (0 - 16)

0= >use default drive for file
1=>auto disk select drive A,
2=>auto disk select drive B,

16= > auto disk select drive P.
fl.. .f8 contain the file name in ASCII upper case, with high bit=0

t1,t2,t3 contain the file type in ASCII upper case, with high bit =0
t1’, t2°, and t3’ denote the bit of these positions,
tl’=1=>Read/Only file,
t2’=1=>SYS file, no DIR list

ex contains the current extent number, normally set to 00 by the
user, but in range 0 - 31 during file I/0

~

\r—»,

sl reserved for internal system use

s2 reserved for internal system use, set to zero on call to OPEN, -
MAKE, SEARCH

rc record count for extent “ex,’ takes on values from 0 - 128

3-46

CHAPTER 2
CP/M 2.0 INTERFACE GUIDE

* Introduction

* Operating System Call Conventions
« Sample File-to-File Copy Program

» Sample File Dump Utility

* Sample Random Access Program

* System Function Summary

2 920

3-40

Introduction

~— This manual describes CP/M, release 2, system organization including the
structure of memory and system entry points. Theintention is to provide the
necessary information required to write programs which operate under
CP/M, and which use the peripheral and disk 1/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic 1/0 System
(BIOS), the Basic Disk Operating System (BDOS), the Console command
processor (CCP), and the Transient Program Area (TPA). The BIOS is a
hardware-dependent module which defines the exact low level interface to a
particular computer system which is necessary for peripheral device 1/0.
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a distinct
program which uses the FDOS to provide a human-oriented interface to the
information which is cataloged on the backup storage device. The TPA is an
area of memory (i.e., the portion which is not used by the FDOS and CCP)
where various non-resistant operating system commands and user programs
are executed. The lower portion of memory is reserved for system
information and is detailed in later sections. Memory organization of the
CP/M system is shown below:

high
memory FDOS (BDOS + BIOS)
FBASE:
CCP
CBASE:
TPA
TBASE:
BOOT: System parameters

Base addresses for the two Apple memory configurations that can be used
,—~ with CP/M are shown in the table below:

Module 44K 56K (Language Card)
CcCp 9400H C400H
BDOS 9C00H CCo0H

3-41

BIOS AA00H DAOOH
Top of RAM AFFFH DFFFH

All standard CP/M versions assume BOOT = 0000H, which is the base of
random access memory. The machine code found at location BOOT
performs a system “warm start” which loads andinitializes the programs and
variables necessary to return control to the CCP. Thus, transient programs
need only jump to location BOOT to return control to CP/M at the
command level. Further, the standard versions assume
TBASE =BOOT +0100H which is normally location 0100H. The principal
entry point to the FDOS is at location BOOT + 0005H (normally 0005H)
where a jump to FBASE is found. The address field at BOOT + 0006H
(normally 0006 H) contains the value of FBASE and canbe used to determine
the size of available memory, assuming the CCP is being overlayed by a
transient program.

Transient programs are loaded into the TPA and executed as follows. The
operator communicates with the CCP by typing command lines following
each prompt. Each command line takes one of the forms:

command
command filel
command filel file2

where “command” is either a built-in function such as DIR or TYPE, or the
name of a transient command or program. If the command is a built-in
function of CP/M, it is executed immediately. Otherwise, the CCP searches
the currently addressed disk for a file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program which
executes in the TPA, and thus implicitly originates at TBASE in memory.
The CCP loads the COM file from the disk into memory starting at TBASE
and possibly extending up to CBASE.

If the command is followed by one or two file specifications, the CCP
prepares one or two file control block (FCB) names in the system parameter
area. These optional FCB’s are in the form necessary to access files through
the FDOS, and are described in the next section.

The transient program receives control from the CCP and begins execution,
perhaps using the 1/0 facilities of the FDOS. The transient program is
“called” from the CCP, and thus can simply return to the CCP upon
completion of its processing, or can jump to BOOT to pass control back to
CP/M. In the first case, the transient program must not use memory above
CBASE, while in the latter case, memory up through FBASE-1 is free.

QA_49

The transient program may use the CP/M 1/0 facilities to communicate
with the operator’s console and peripheral devices, including the disk
subsystem. The I/0 system is accessed by passing a “function number” and
an “information address” to CP/M through the FDOS entry point at
BOOT + 0005H. In the case of a disk read, for example, the transient program
sends the number corresponding to a disk read, along with the address of an
FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and
returns with either a disk read completion indication or an error number
indicating that the disk read was unsuccessful. The function numbers and
error indicators are given below.

Operating System Call Conventions

The purpose of this section is to provide detailed information for performing
direct operating system calls from user programs.

CP/Mfacilities which are available for access by transient programsfallinto
two general categories: simple device I/0, and disk file I/0. The simple
device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character

Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Qutput are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Reniame

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

3-43

As mentioned above, access to the FDOS functions is accomplished by
passing a function number and information address through the primary
entry point at location BOOT + 0005H. In general, the function number is
passed in register C with the information addressin the double byte pair DE.
Single byte values are returned in register A, with double byte values
returned in HL (a zero value is returned when the function number is out of
range). For reasons of compatibility, register A =L and register B=H upon
returnin all cases. Note that the register passing conventions of CP/M agree
with those of Intel’s PL/M systems programming language. The list of
CP/M function numbers is given below.

0 System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 Write Sequential
3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List Output 24 Return Login Vector
6 Direct Console 170 25 Return Current Disk
7 Get 170 Byte 26 Set DMA Address
8 Set 1/0 Byte 27 Get Addr (Alloc)
9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/0O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr (Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to maintain
upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to
an eight level stack area with the CCP return address pushed onto thestack,
leaving seven levels before overflow occurs. Although this stack is usually
not used by a transient program (i.e., most transients return to the CCP
through a jump to location 0000H), it is sufficiently large to make CP/M
system calls since the FDOS switches to a local stack at system entry. The
following assembly language program segment, for example, reads char-
acters continuously until an asterisk is encountered, at which time control
returns to the CCP (assuming a standard CP/M system with
BOOT + 0000H):

3-44

BDOS EQU 0005H ;STANDARD CP/M ENTRY

CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG 0100H ;BASE OF TPA

NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN (A)
CPI o ;END OF PROCESSING?
IJNZ NEXTC ;LOOPIF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a logical
organization which allows any particular file to contain any number of
records from completely empty, to the full capacity of the drive. Each drive
is logically distinct with a disk directory and file data area. The disk file
names are in three parts: the drive select code, the file name consisting of one
to eight non-blank characters, and the file type consisting of zero to three
non-blank characters. The file type names the generic category of a
particular file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories which
have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup

INT Intermediate Code SYM SID Symbol File
COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each “line”
of the source file is followed by a carriage-return line-feed sequence (0DH
followed by 0AH). Thus one 128 byte CP/M record could contain several
lines of source text. The end of an ASCII file is denoted by a control-Z
character (1AH) or a real end of file, returned by the CP/M read operation.
Control-Z characters embedded within machine code files (e.g., COM files)
are ignored, however, and the end of file condition returned by CP/M is used
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128
bytes each, numbered from 0 through 65535, thus allowing a maximum of 8
megabytes per file. Note, however, that although the records may be
considered logically contiguous, they may not be physically contiguous in
the disk data area. Internally, all files are broken into 16K byte segments
called logical extents, so that counters are easily maintained as 8-bit values.
Although the decomposition into extents is discussed in the paragraphs
which follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random access
modes.

3-45

In the file operations starting with function number 15, DE usually
addresses a file control block (FCB). Transient programs often use the
default file control block area reserved by CP/M at location BOOT + 005CH
(normally 005CH) for simple file operations. The basic unit of file
information is a 128 byte record used for all file operations, thus a default
location for disk 1/0 is provided by CP/M at location BOOT +0080H
(normally 0080H) which is the initial default DMA address (see function 26).
All directory operations take place in a reserved area which does not affect
write buffers as was the case in release 1, with the exception of Search First
and Search Next, where compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33 bytes for
Sequential access and a series of 36 bytes in the case that the file is accessed
randomly. The default file control block normally located at 005CH can be
used for random access files, since the three bytesstartingat BOOT +007DH
are available for this purpose. The FCB format is shown with the following
fields:

lar ol el /ds]alelelels]se]wc]wol/ Jalaloale]

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
where
dr drive code (0 - 16)

0 =>use default drive for file
1=>auto disk select drive A,
2=>auto disk select drive B,

16= >auto disk select drive P.
fl.. .f8 contain the file name in ASCII upper case, with high bit=0

t1,t2,t3 contain the file type in ASCII upper case, with high bit=0
t1’, t2°, and t3’ denote the bit of these positions,
t1’=1=>Read/Only file,
t2’=1=>SYS file, no DIR list

ex contains the current extent number, normally set to 00 by the
user, but in range 0 - 31 during file I/0

sl reserved for internal system use

s2 reserved for internal system use, set to zero on call to OPEN, TN

MAKE, SEARCH

rc record count for extent “ex,” takes on values from 0 - 128

3-46

do.. dn filled-in by CP/M, reserved for system use

cr current record to read or write in a sequential file operation,
normally set to zero by user

r0,r1,r2 optional random record number in the range 0-65535, with
overflow tor2,10,r1 constitute a 16-bit value with low byte r0,
and high byte r1

Each file being accessed through CP/M must have a corresponding FCB
which provides the name and allocation information for all subsequent file
operations. When accessing files, it is the programmer’s responsibility to fill
the lower sixteen bytes of the FCB and initialize the “cr” field. Normally,
bytes 1 through 11 are set to the ASCII character values for the file name and
file type, while all other fields are zero.

FCB’s are stored in a directory area of the disk, and are brought into central
memory before proceeding with file operations (see the OPEN and MAKE
functions). The memory copy of the FCB is updated as file operations take
place and later recorded permanently on disk at the termination of the file
operation (see the CLOSE command).

The CCP constructs the first sixteen bytes of two optional FCB’s for a
transient by scanning the remainder of the line following the transient name,
denoted by “file1” and “file2” in the prototype command line described
above, with unspecified fields set to ASCII blanks. The first FCB is
constructed at location BOOT + 005CH, and can be used as-is for subsequent
file operations. The second FCB occupies the d0 . . . dn portion of the first
FCB, and must be moved to another area of memory before use. If, for
example, the operator types

PROGNAME B:X.Z0T Y.ZAP

the file PROGNAME. COM is loaded into the TPA, and the default FCB at
BOOT +005CH is initialized to drive code 2, file name “X” and file type
“ZOT? The second drive code takes the default value 0, which is placed at
BOOT +006CH, with the file name “Y” placed into location BOOT + 006 DH
and file type “ZAP” located 8 bytes later at BOOT + 0075H. All remaining
fields through “cr” are set to zero. Note again that it is the programmer’s
responsibility to move thissecond filename and type to another area, usually
a separate file control block, before opening the file which begins at
BOOT +005CH, due to the fact that the open operation will overwrite the
second name and type.

If no file names are specifiad in the original command, then the fields
beginning at BOOT +005DH and BOOT + 006DH contain blanks. In all

3-47

cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location BOOT + 0080H -
is initialized to the command line tail typed by the operator following the
program name. The first position contains the number of characters, with
the characters themselves following the character count. Given the above
command line, the area beginning at BOOT + 0080H is initialized as follows:

BOOT + 0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
14 47 BT wn wxn wn o wgn o agn W wn ayn e wge wan wpe

where the characters are translated to upper case ASCII with unintialized
memory following the last valid character. Again, it is the responsibility of
the programmer to extract the information from this buffer before any file
operations are performed, unless the default DMA address is explicitly
changed.

The individual functions are described in detail in the pages which follow.
FUNCTION 0: System Reset

Entry Parameters:
Register C: 00H

The system reset function returns control to the CP/M operating system at
the CCP level. The CCP re-initializes the disk subsystem by selecting and
logging-in disk drive A. This function has exactly the same effect as a jump
to location BOOT.

FUNCTION 1: CONSOLE INPUT

Entry Parameters:
Register C: 01H

Returned Value :
Register A: ASCII Character

The console input function reads the next console character to register A.
Graphic characters, along with carriage return, line feed, and backspace
(ctl-H) are echoed to the console. Tab characters (ctl-I) are expanded in ~™,
columns of eight characters. A check is made for start/stop scroll (ctl-S) and
start/stop printer echo (ctl-P). The FDOS does not return to the calling
program until a character has been typed, thus suspending execution of a
character if not ready.

3-48

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Register C: 02H
Register E: ASCII Character
The ASCII character from register E is sent to the console device. Similar to
function 1, tabs are expanded and checks are made for start/stop scrolland
printer echo.

FUNCTION 3: READER INPUT

Entry Parameters:
Register C: 03H

Returned Value :
Register ~ A: ASCII Character

The Reader Input function reads the next character from the logical reader
into register A. Control does not return until the character has been read.

FUNCTION 4: PUNCH OUTPUT

Entry Parameters:

Register C:04H
Register E: ASCII Character

The Punch Output function sends the character from register E to the
logical punch device.

FUNCTION 5: LIST OUTPUT

Entry Parameters:
Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register E to the
logical listing device.

3-49

FUNCTION 6: DIRECT CONSOLE1/0

Entry Parameters:
Register C: 06H
Register E: OFFH (input) or

char (output)
Returned Value :
Register A: char or status
(no value)

Direct console 1/0 is supported under CP/M for those specialized
applications where unadorned console input and output is required. Use of
this function should, in general, be avoided since it bypasses all of CP/M’s
normal control character functions (e.g., control-S and control-P).
Programs which perform direct I/0 through the BIOS under previous
releases of CP/M, however, should be changed to use direct /O under BDOS
so that they can be fully supported under future releases of MP/M and
CP/M.

Upon entry to function 6, register E either contains hexadecimal FF,
denoting a console input request, or register E contains an ASCII character.
Iftheinput valueis FF, then function 6 returns A = 00if no character isready,
otherwise A contains the next console input character.

If the input value in E is not FF, then function 6 assumes that E contains a
valid ASCII character which is sent to the console.

FUNCTION 7: GETI1/0 BYTE

Entry Parameters:
Register C:07H

Returned Value:
Register A: 170 Byte Value

The Get I/0 Byte function returns the current value of IOBYTE in register
A

FUNCTION 8: SET1/0 BYTE

Entry Parameters:
Register C: 08H
Register E: I/0 Byte Value

3-50

The Set 170 Byte function changes the system IOBYTE value to that given
in register E.

FUNCTION 9: PRINT STRING

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in memory at the
location given by DE to the console device, until a “$” is encountered in the
string. Tabs are expanded asin function 2,and checks are made for start/stop
scroll and printer echo.

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register C: 0AH
Registers DE: Buffer Address

Returned Value
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer
addressed by registers DE. Console input is terminated when either theinput
buffer overflows. The Read Buffer takes the form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 ... +n
menc|c1lc2Ic3[c4]c5[cGlc7|‘..|??l

where “mx” is the maximum number of characters which the buffer will hold
(1 to 255), “nc” is the number of characters read (set by FDOS upon return),
followed by the characters read from the console. If nc < mx, then
uninitialized positions follow the last character, denoted by “??” in the above
figure. A number of control functions are recognized during line editing:

rub/del removes the echoes the last character
ctl-C reboots when at the beginning of line

ctl-E causes physical end of line
ctl-H backspaces one character position
ctl-J (line feed) terminates input line

ctl-M (return) terminates input line
ctl-R retypes the current line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the leftmost

3-51

position (e.g., ctl-X) do so only to the column position where the prompt
ended (in earlier releases, the carriage returned to the extreme left margin).
This convention makes operator data input and line correction more legible.

FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:
Register C: 0BH

Return Value :
Register A: Console Status

The Console Status function checks to see if a character has been typed at
the console. If a character isready, the value OFFH is returned in register A.
Otherwise a 00H value is returned.

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C:0CH

Returned Value :
Registers HL: Version Number

Function 12 provides information which allows version independent
programming. A two-byte value is returned, with H=00 designating the
CP/M release (H =01 for MP/M), and L =00 for all releases previous to 2.0.
CP/M 2.0 returns a hexadecimal 20 in register L, with subsequent version 2
releases in the hexadecimal range 21, 22, through 2F. Using function 12, for
example, you can write application programs which provide both sequential
and random access functions, with random access disabled when operating
under early releases of CP/M.

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C:0DH

The Reset Disk Function is used to programmatically restore the file system
to a reset state where all disks are set to read/write (see functions 28 and 29),
only disk drive A is selected, and the default DMA address is reset to

BOOT + 0080H. This function can be used, for example, by an application °

program which requires a disk change without a system reboot.

3-52

o~

FUNCTION 14: SELECT DISK

Entry Parameters:
Register C: OEH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the
default disk for subsequent file operations, with E =0 for drive A, 1 for drive
B, and so-forth through 15 corresponding to drive P in a full sixteen drive
system. The drive is placed in an “on-line” status which, in particular,
activates its directory until the next cold start, warm start, or disk system
reset operation. If the disk media is changed while it is on-line, the drive
automatically goes to a read/only status in a standard CP/M environment
(see function 28). FCB’s which specify drive code zero (dr =00H) automat-
ically reference the currently selected default drive. Drive code values
between 1 and 16, however, ignore the selected default drive and directly
reference drives A through P.

FUNCTION 15: OPEN FILE

Entry Parameters:
Register C: OFH
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Open File operation is used to activate a file which currently existsin the
disk directory for the currently active user number. The FDOS scans the
referenced disk directory for a match in positions 1 through 14 of the FCB
referenced by DE (byte sl isautomatically zeroed), wherean ASCII question
mark (3FH) matches any directory character in any of these positions.
Normally, no question marks are included and, further, bytes “ex” and “s2”
of the FCB are zero.

If a directory element is matched, the relevant directory information is
copied into bytes d0 through dn of the FCB, thus allowing access to the files
through subsequent read and write operations. Note that an existing file
must not be accessed until a successful open operation is completed. Upon
return, the open function returns a “directory code” with the value O through
3if the open was successful, or OFFH (255 decimal) if the file cannot be found.
If question marks occur in the FCB then the first matching FCBis activated.
Note that the current record (“cr”’) must be zeroed by the program if the file
is to be accessed sequentially from the first record.

3-53

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Close File function performs the inverse of the open file function. Given
that the FCB addressed by DE has been previously activated through an
open or make function (see functions 15 and 22), the close function
permanently records the new FCBin the referenced disk directory. The FCB
matching process for the closeisidentical to the open function. Thedirectory
code returned for a successful close operationis 0, 1, 2, or 3, while a 0FFH (255
decimal) is returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Register C:11H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB
addressed by DE. The value 255 (hexadecimal FF)isreturned if the fileis not
found, otherwise 0, 1, 2, or 3 is returned indicating the file is present. In the
case that the file is found, the current DMA address is filled with the record
containing the directory entry, and the relative starting positionis A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not normally
required for application programs, the directory information can be
extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from
“f1” through “ex” matches the corresponding field of any directory entry on
the default or auto-selected disk drive. If the “dr” field contains an ASCII
question mark, then the auto disk selected function is disabled, the default
disk is searched, with the search function returning any matched entry,
allocated or free, belonging to any user number. This latter function is not
normally used by application programs, but does allow complete flexibility
to scan all current directory values. If the “dr” field is not a question mark,
the “s2” byte is automatically zeroed.

3.54

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters :
Register C:12H

Returned Value
Register A: Directory Code

Che Search Next function is similar to the Search First function, except that
the directory scan continues from the last matched entry. Similar to
function 17, function 18 returns the decimal value 255 in A when no more
directory items match.

FUNCTION 19: DELETE FILE

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Delete File function removes files which match the FCB addresses by
DE. The filename and type may contain ambiguous references (i.e., question
marks in various positions), but the drive select code cannot be ambiguous,
as in the Search and Search Next functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be
found, otherwise a value in the range 0 to 3 is returned.

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or
make function (numbers 15 and 22), the Read Sequential function reads the
next 128 byte record from the file into memory at the current DMA address.
The record is read from position “cr” of the extent, and the “cr” field is
automatically incremented to the next record position. If the “cr” field
overflows then the next logical extent is automatically opened and the “cr”
field isreset to zeroin preparation for the next read operation. The value 00H

3.55

is returned in the A register if the read operation was successful, while a
non-zero value is returned if no data exists at the next record position (e.g.,
end of file occurs).

FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or
makefunction (numbers 15 and 22), the Write Sequential function writes the
128 byte data record at the current DMA address to the file named by the
FCB. The record is placed at position “cr” of the file, and the “cr” field is
automatically incremented to the next record position. If the “cr” field
overflows then the next logical extent is automatically opened and the “cr”
field is reset to zero in preparation for the next write operation. Write
operations can take place into an existing file, in which case newly written
records overlay those which already exist in the file. Register A =00H upon
return from a successful write operation, while a non-zero value indicatesan
unsuccessful write due to a full disk.

FUNCTION 22: MAKE FILE

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Make File operation is similar to the open file operation except that the
FCB must name a file which does not exist in the currently referenced disk
directory (i.e., the one named explicitly by a non-zero “dr” code, or the
default disk if “dr”is zero). The FDOS creates the file and initializes both the
directory and main memory value to an empty file. The programmer must
ensure that no duplicate file names occur, and a preceding delete operation
is sufficient if there is any possibility of duplication. Upon return, register
A=0,1,2, or 3if the operation was successful and OFFH (255 decimal) if no
more directory space is available. The make function has the side-effect of
activating the FCB and thus a subsequent open is not necessary.

3-56

FUNCTION 23: RENAME FILE

Entry Parameters:
Register C:17H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named in the
second 16 bytes. The drive code “dr” at position 0 is used to select the drive,
while the drive code for the new file name at position 16 of the FCBis assumed
to be zero. Upon return, register A is set to a value between 0 and 3 if the
rename was successful, and OFFH (255 decimal) if the first file name could
not be found in the directory scan.

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register C: 18H

Returned Value :
Registers HL: Login Vector

The login vector value returned by CP/M is a 16-bit value in HL, where the
least significant bit of L corresponds to the first drive A, and the high order
bit of H corresponds to thesixteenth drive, labelled P. A “0” bitindicates that
the drive is not on-line, while a “1” bit marks a drive that is actively on-line
due to an explicit disk drive selection, or an implicit drive select caused by a
file operation which specified a non-zero “dr” field. Note that compatibility
is maintained with earlier releases, since registers A and L contain the same
values upon return.

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register C: 19H

Returned Value :
Register A: Current Disk

Function 25 returns the currently selected default disk number in register A.
The disk numbersrange from 0 through 15 corresponding to drives A through
P.

3-57

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Regular C: 1AH
Registers DE: DMA Address

“DMA” is an acronym for Direct Memory Address, which is often used in
connection with disk controllers which directly access the memory of the
mainframe computer to transfer data to and from the disk subsystem.
Although many computer systems use non-DMA access (i.e., the data is
transferred through programmed 1/0 operations), the DMA address has, in
CP/M, come to mean the address at which the 128 byte data record resides
before a disk write and after a disk read. Upon cold start, warm start, or disk
system reset, the DMA address is automatically set to BOOT + 0080H. The
Set DMA function, however, can be used to change this default value to
address another area of memory where the data records reside. Thus, the
DMA address becomes the value specified by DE until it is changed by a
subsequent Set DMA function, cold start, warm start, or disk system reset.

FUNCTION 27: GET ADDR (ALLOC)

Entry Parameters:
Register C:1BH

Returned Value :
Registers HL: ALLOC Address

An “allocation vector” is maintained in main memory for each on-line disk
drive. Various system programs use the information provided by the
allocation vector to determine the amount of remaining storage (see the
STAT program). Function 27 returns the base address of the allocation
vector for the currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked read /only. Although
this function is not normally used by application programs, additional
details of the allocation vector are found in the “CP/M Alteration Guide”

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register C:1CH

The disk write protect function provides temporary write protection for the
currently selected disk. Any attempt to write to the disk, before the next cold
or warm start operation produces the message

Bdos Erron d: R/O
2_.58

S~

FUNCTION 29: GET READ/ONLY VECTOR

Entry Parameters:
Register C:1DH

Returned Value :
Registers HL: R/0 Vector Value

Function 29 returns a bit vector in register pair HL which indicates drives
which have the temporary read/only bit set. Similar to function 24, the least
significant bit corresponds to drive A, while the most significant bit
corresponds to drive P. The R/O bit is set either by the explicit call to
function 28, or by the automatic software mechanisms within CP/M which
detect changed disks.

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters :
Register C:1EH
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of
permanent indicators attached to files. In particular, the R/0O and System
attributes (t1’ and t2’) can be set or reset. The DE pair addresses an
unambiguous file name with the appropriate attributesset orreset. Function
30searches for amatch, and changes the matched directory entry to contain
the selected indicators. Indicators f1’ through f4’ are not presently used, but
may be useful for applications programs, since they are not involved in the
matching process during file open and close operations. Indicators 5’
through f8 and t3’ are reserved for future system expansion.

FUNCTION 31: GET ADDR (DISK PARMS)

Entry Parameters:
Register C:1FH

Returned Value :
Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned in HL as
a result of this function call. This address can be used for either of two
purposes. First, the disk parameter values can be extracted for display and

3-59

space computation purposes, or transient programs can dynamically change
the values of current disk parameters when the disk environment changes, if
required. Normally, application programs will not require this facility.

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register C: 20H
Register E: OFFH (get or

User Code (set)
Returned Value :
Register A: Current Code or
(no value)

An application program can change or interrogate the currently active user
number by calling function 32. If register E =0FFH, then the value of the
current user number is returned in register A, where the valueisin therange
0 to 31. If register E is not OFFH, then the current user number is changed to
the value of E (modulo 32).

FUNCTION 33: READ RANDOM

Entry Parameters:
Register C:21H
Registers DE: FCB Address

Returned Value :
Register A: Return Code

The Read Random function is similar to the sequential file read operation of
previous releases, except that the read operation takes place at a particular
record number, selected by the 24-bit value constructed from the three byte
field following the FCB (byte positions 10 at 33, r1 at 34, and r2 at 35). Note
that the sequence of 24 bits is stored with least significant byte first (r0),
middle byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2 must be zero,
however, since a non-zero value indicates overflow past the end of file.

Thus, the r0,r1 byte pair is treated as a double-byte, or “word” value, which
contains the record to read. This value ranges from 0 to 65535, providing
access to any particular record of the 8 megabyte file. In order to process a
file using random access, the base extent (extent 0) must first be opened.
Although the base extent may or may not contain any allocated data, this
ensures that the fileis properly recorded in the directory, and s visiblein DIR
requests. The selected record number is then stored into the random record
field (r0,r1), and the BDOS is called to read the record. Upon return from the

3-60

TN

call, register A either contains an error code, as listed below, or the value 00
indicating the operation was successful. In the latter case, the current DMA
_ address contains the randomly accessed record. Note that contrary to the
sequential read operation, the record number is not advanced. Thus,
subsequent random read operations continue to read the same record.

Upon each random read operation, the logical extent and current record
values are automatically set. Thus, the file can be sequentially read or
written, starting from the current randomly accessed position. Note,
however, that in this case, the last randomly read record will bere-read as you
switch from random mode to sequential read, and the last record will be
re-written as you switch to a sequential write operation. You can, of course,
simply advance the random record position following each random read or
write to obtain the effect of a sequential I/0 operation.

Error codes returned in register A following a random read are listed below.

01 reading unwritten data

02 (not returning in random mode)
03 cannot close current extent

04 seek to unwritten extent

05 (not returned in read mode)

06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a data
block which has not been previously written, or an extent which hasnot been
created, which are equivalent conditions. Error 3 does not normally occur
under proper system operation, but can be cleared by simply re-reading, or
re-opening extent zero as long as the disk is not physically write protected.
Error code 06 occurs whenever byte r2 is non-zero under the current 2.0
release. Normally, non-zero return codes can be treated as missing data, with
zero return codes indicating operation complete.

FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value :
Register A: Return Code

The Write Random operation is initiated similar to the Read Random call,
except that data is written to the disk from the current DMA address.
Further, if the disk extent or data block which is the target of the write has
not yet been allocated, the allocation is performed before the write operation

3-61

continues. As in the Read Random operation, the random record number is
not changed as a result of the write. The logical extent number and current
record positions of the file control block are set to correspond to the random
record which is being written. Again, sequential read or write operations can
commence following a random write, with the notation that the currently
addressed record is either read or rewritten again as the sequential operation
begins. You can also simply advance the random record position following
each write to get the effect of a sequential write operation. Note that in
particular, reading or writing the last record of an extent in random mode
does not cause an automatic extent switch as it does in sequential mode.

The error codesreturned by arandom write areidentical to the random read
operation with the addition of error code 05, which indicates that a new
extent cannot be created due to directory overflow.

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register C:23H
Registers DE: FCB Address

Returned Value :
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in
random mode format (bytes r0, rl, and r2 are present). The FCB contains an
unambiguous file name which is used in the directory scan. Upon return, the
random record bytes contain the “virtual” file size which is, in effect, the
record address of the record following the end of the file. If, following a call
to function 35, the high record byte r2 is 01, then the file contains the
magximum record count 65536. Otherwise, bytes r0 and rl1 constitute a 16-bit
value (r0 is the least significant byte, as before) which is the file size.

Data can be appended to the end of an existing file by simply calling function
35 to set the random record position to the end of file, then performing a
sequence of random writes starting at the preset record address

The virtual size of a file corresponds to the physical size when the file is
written sequentially. If, instead, the file was created in random mode and
“holes” exist in the allocation, then the file may in fact contain fewer records
than the size indicates. If, for example, only the last record of an eight
megabyte file is written in random mode (i.e., record number 65535), then the
virtual size is 65536 records, although only one block of data is actually
allocated.

3-62

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register C:24H
Registers DE: FCB Address

Returned Value :
Random Record Field Set

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be usefulin two
ways.

First,itis often necessary toinitially read and scan a sequential file to extract
the position of various “key” fields. As each key is encountered, function 36
is called to compute the random record position for the data corresponding
to this key. If the data unit size is 128 bytes, the resulting record position is
placed into a table with the key for later retrieval. After scaning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing arandom read using the
corresponding random record number which was saved earlier. The scheme
is easily generated when variable record lengths are involved since the
program need only store the buffer-relative byte position along with the key
and record number in order to find the exact starting position of the keyed
data at a later time.

A second use of function 36 occurs when switching from a sequential read or
write over to random read or write. A file is sequentially accessed to a
particular pointin the file, function 36 is called which setsthe record number,
and subsequent random read and write operations continue from the
selected point in the file,

Sample File-to-File Copy Program

The program shown below provides a relatively simple example of file
operations. The program source file is created as COPY.ASM using the
CP/M ED program and then assembled using ASM or MAC, resulting in a
“HEX?” file. The LOAD program is then used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting the
stack pointer to a local area, and then proceeds to move the second name
from the default area at 006CH to a 33-byte file control block called DFCB.
The DFCB is then prepared for file operations by clearing the current record
field. At this point, the source and destination FCB’s are ready for processing
since the SFCB at 005CH is properly set-up by the CCP upon entry to the
COPY program. That is, the first name is placed into the default FCB, with

3-63

the proper fields zeroed, including the current record field at 007CH. The
program continues by opening the source file, deleting any existing
destination file, and then creating the destination file. If all thisis successful,
the program loops at the label COPY until each record has been read from
the source file and placed into the destination file. Upon completion of the
data transfer, the destination file is closed and the program returns to the

CCP command level by jumping to BOOT.

7
boot

sample file~-to~file copy program

at the ccp level,

the command

copy a:x.y b:u.,v

copies the file named x.y from drive

a to a file named

u.v on drive b,

0000 = equ 2000h ; system reboot
0005 = bdos equ 0005h ; bdos entry point
#@85c = fcbl egqu 9085ch ; first file name
085c = sfcb equ fcbl ; source fcb
@déc = fcb2 equ @dé6ch ; second file name
0880 = dbuf £ equ 2p88éh ; default buffer
plee = tpa equ 0100h ; beginning of tpa
0089 = printf equ 9 ; print buffer func#
paof = openf equ 15 ; open file func#
0018 = closef equ 16 ; close file func#
9013 = deletef equ 19 ; delete file funck
0814 = readf equ 20 ; sequential read
@815 = writef equ 21 ; sequential write
0plé = makef equ 22 ; make file func#
8lo0 org tpa ; beginning of tpa
0160 311b@2 Ixi sp,stack; local stack
i move second file name to dfcb
0163 delod mvi c,l6 ;s half an fcb
0105 116co9 Ixi d,fcb2 ; saurce of move
0108 21dadl 1xi h,dfcb ; destination fcb
01¢b la mfcb: ldax d ; source fcb
910c 13 inx d ; ready next
pléd 77 mov m,a ; dest fcb
0l0e 23 inx h ; ready next
019f 8d dcr c ; count 16...8
911@ c20bdl jnz mfcb ; loop 16 times
; name has been moved, zero cr
9113 af . xra a ; a = géh
0114 32fadl sta dfcbcr ; current rec = @
; source and destination fcb's ready
8117 115c@0 1xi d,sfcb ; source file
flla cd6901 call open ; error if 255
@11d 1187481 1xi d,nofile; ready message
0120 3c inr a ; 255 becomes 8
0121 ccolel cz finis ; done if no file
; source file open, prep destination
@124 11d4a0l 1xi d,dfcb ; destination
0127 cd7301 call delete ; remove if present
012a 11dadl 1xi d,dfcb ; destination
@124 cdsz201 call make ; create the file
0130 119601 1xi d,nodir ; reaoy message

3-64

8133
9134

8137
213a

013d
913e

pl4l
0144
0147
0l4a
214b
21l4e

9151
0154
8157

215a 3

915b

815e

0161
0163
0166

0169
916b

21l6e
0178

0173
8175

2178
817a

9174
817t

g182
0ld4

dls?
4196
dlad
dlob
dlcc

9 lda
9l1lfa
U1fb

821b

3¢
cc6ldl

115c80
cd7801
b7

c2510@1

11lda@l
cd7401
11a981
b7

cd46181
c33781

eofile:
11dadl
cd6efl
21bbpl

c
ccblal

llccal
Einis:
0ed9

cde599
clegeo

Qedf o
c3osee

pen:

deld élosm

c30580

el éelete:

c395080
deld Eead:
c36520
vels erte:
c€39509
gelb &ake:
c3v509

;

6e6t2dfnofile:
6e6f2d9nodir:
6£7574tspace:
7772695wrprot:
636f7d@normal:

dfcb:
ofcbcr

stack:

inrc a H
cz finis B

source file open,

255 becomes 9
done if no dir space

cest file open

copy until end of file on source
1xi d,sfcb ; source

call read ; read next record
ora a ; end of file?

jnz eofile ; skip write if so
not end of file, write the record
1xi d,dfcb ; destination

call write ; write record

1xi d,space ; ready message
ora a ; 60 if write ok
cno finis ; end if so

jmp copy ; loop until eof

; end of file, close destination

1xi d,dfcb ; destination

call close ; 255 if error

1x1i h,wrprot; ready message
inr a : 255 becomes 089
cz tinis ; shouldn't happen

copy operation complete, end

1xi d,normal; ready message

; write message given by de, reboot
mvi c,printf

call bdos ; write message

jmp boot ;3 reboot system
system interface subroutines

(all return directly from bdos)

mvi c,openf
jmp bdos

mvi c,closef
jmp bdos

mvi c,deletef
jmp bdos

mvi c,readf
jmp bdos

mvi c,writef
jmp bdos

mvi c,makef
jmp bdos

console messages

db 'no source file$'

db 'no directory space$’
db ‘out of data space$’
db ‘write protected?$’
db ‘copy completeS$’

data areas

ds 33 ; destination fcb
equ dfcb+32 ; current record

ds 32 ; 16 level stack

end

3-65

Note that there are several simplifications in this particular program. First,
there are no checks for invalid file names which could, for example, contain
ambiguous references. This situation could be detected by scanning the 32
byte default area starting at location 005CH for ASCII question marks. A
check should also be made to ensure that the file names have, in fact, heen
included (check locations 005DH and 006DH for non-blank ASCII
characters), Finally, a check should be made to ensure that the source and
destination file names are different. A speed improvement could be made by
buffering more data on each read operation. One could, for example,
determine the size of memory by fetching FBASE from location 0006H and
use the entire remaining portion of memory for a data buffer. In this case, the
programmer simply resets the DMA address to the next successive 128 byte
area before each read. Upon writing to the destination file, the DMA address
isreset to the beginning of the buffer and incremented by 128 bytes to theend
as each record is transferred to the destination file.

Sample File Dump Utility.

The file dump program shown below is slightly more complex than the single
copy program given in the previous section. The dump program reads an
input file, specified in the CCP command line, and displays the content of
each record in hexadecimal format at the console. Note that the dump
program saves the CCP’s stack upon entry, resets the stack to a local area,
and restores the CCP’s stack before returning directly to the CCP. Thus, the
dump program does not perform warm start at the end of processing.

i RUMP program reads input file and displays hex data

8109 org 10@h .
9885 = bdos equ Q@aesh :doa entry point
agel = cons aqu 1 1read console
0882 = typef equ 2 stype function
048 = printf equ 9 :buffer print entry
64gb = bek§ equ 11 :break key functiom (true if char
200f = openf equ 19 1file open
88l4 = readf equ 208 1read function
885¢c = écb equ Sch ;file contral bhlock address
00289 = buff equ g§oh ;input disk huffer address
H
H non graphic characters
2884 = ce equ 8dh 1carriage return
gdda = 1f equ 8ah sline feed
H
? file control black definitians
805¢c = fchdn equ feh+d ;disk name
00534 = fcbin equ fchtl :file name
0B6S = fchbit equ fcb*® pdisk file type (3 characters)
2068 = fcbrl equ fcb+l2 ;file's current reel number
806b = fcbre equ fcb+l5 :file‘a record count (@ to 128)
402c = fcher equ fcb+32 j;current (next) record number (8
0079 = fcbin equ feb+33 ;fcb length
; %et up stack
8l0d 210009 1xi h,8
8183 39 Qad

sp
§ entry stack pointer in hl from the ccp

3-66

0104
8107
@l0a

eled
glof

e
—
i
@unn

811b
211d

0120

0123
0124
0127
6128
012b

#l2c
gl2d
glaf

0132

8135

2138
9139

#813c
913d
0144
9141

0144
9145
9147
01l4a
014b
a1lde

8151
8154
0157

9158

8159
815c
815e
816l

0164

221582
315782

cdclal
feff
c2lbel

11£301
cd9cdl
c35181

Je8@
321382

210000

e5
cdaz2dl
el
das51@1l
47

74
e60f
c24401

cd7201

cds9el

of
daslal

7c
cdgfal
74
cdsfel

23
3e28
cd6591
78
cdgfal
c32301

cd7201
2a}15082
f9

c9

e5d5c5
delb
cdesee
cldlel
c9

openok:

éloop:

nonum:

Cme v s

reak:

i
pchar:

shld oldsp .
set sp to local stack area (restored at finis
1xi sp,stktop

read and print successive buffers

call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file not there, give error message and return

1xi d,opnmsg
call err
jmp finis ;to return

;open operation ok, set buffer index to end
mvi a,80h

sta ibp ;set buffer pointer to 88h

hl contains next address to print

1xi h,@ ;start with 0000

push h ;save line position

call gnb

pop h ;recall line position

je finis ;carry set by gnb if end file
mov b,a

print hex values
check for line fold

mov a,l

ani 0fh ;check low 4 bits
jnz nonum

print line number

call crlf

check for break key

call break

accum 1sb = 1 if character ready
rrc ;into carry

jc finis ;don’t print any more
mov a,h

call phex

mov a,l

call phex

inx h ;to next line number
mvi a,' '

call pchar

mov a,b

call phex

jmp gloop

end of dump, return to ccp
(note that a jmp to 80@0h reboots)

call crlf

lhld oldsp

sphl

stack pointer contains ccp's stack location
ret ;to the ccp

subroutines

;1check break key (actually any key will do}
push h! push df push b; enviromment saved
nvi c,brkf

call bdos

pop b! pop &t pop h; enviromment restored
ret

;print a character

3-67

0165 e5d5cS push h! push d! push b; saved

0168 dep2 mvi c,typef
6l6a Sf mov e,a
816b cdesee call bdos
8l6e cldlel pop b! pop d! pop h; restored
2171 c9 ret
crlf:
8172 3edd mvi a,cr
0174 cdes5el call pchar
8177 3ePa mvi a,lf
8179 cdéesel call pchar
81l7c c9 ret
pnib: ;print nibble in regqg a
917d e60f ani ofh ;low 4 bits
817f feda cpi 10
8181 d28901 jnc ple
: less than or equal to 9
0184 c630 adi ‘e’
8186 c38bdl jmp prn
H greater or equal to 18
8189 c637 ple: adi ‘a' - 10
#18b cd650@1 prn: call pchar
8l8e c9 ret
phex: ;print hex char in reg a
018f f£5 push psw
0198 of rrc
9191 of rec
8192 ef rrc
0193 @f rrc
2194 cd74de1l call pnib ;print nibble
8197 f1 pop psw
8198 cd7de1l call pnib
919b c9 ret
err: ;print error message
; d,e addresses message ending with "§*"
819c Be@9 mvi c,printf ;print buffer function
919e cdesew call bdos
8lal c9 ret
gnb: ;get next byte
8la2 3al1382 lda ibp
81a5 fe80 cpi 8oh
0la7 c2b3@1 jnz 1]

read another buffer

#laa cdcedl call diskr
@lad b7 ora a ;zero value if read oh
flae cab3gl jz g@ ;for another byte

; end of data, return with carry set for eof
91bl 37 stc
01b2 c9 ret

go: iread the byte at buff+reg a
01b3 sf mov e,a ;ls byte of buffer index
01b4 1600 mvi 4,0 ;double precision index to de
21b6 3¢ inr a ;index=index+l
91b7 321382 sta ibp ;back to memory

pointer is incremented
save the current file address

@lba 218000 1xi h,buff
81bd 19 dad d o

H absolute character address is in hl
@lbe 7e mov a,m

3-68

H byte is in the accumulator

01bf b7 ora a ;reset carry bit
81lch c9 ret
setup: ;set up file
H open the file for input
B8lcl af xra a ;zero to accum
Blc2 327cP0 sta fcber ;clear current record
8lcs5 115c08 1xi a,fchb
flc8 @edf mvi c,openf
Blca cdasee call bdos
; 255 in accum if open error
flcd c9 ret
diskr: ;read disk file record
B lce e5d5cS push h! push 4! push b
91dl 115c0@ 1xi d,fcb
01d4 @deld mvi c,readf
91d6 cdas5ee call bdos
2149 cldlel pop b! pop “! pop h
#ldc c9 ret
H fixed message area
91dd 46494clsignon: db ‘file du p version 2,08
81f3 8dPadedopnmsg: db cr,1f,'no input file present on disk$'
: variable area
8213 ibp: ds 2 ;input buffer pointer
0215 oldsp: ds 2 ;entry sp value from ccp
; stack area
0217 ds 64 ;reserve 32 level stack
stktop:
8257 ' end

Sample Random Access Program.

This manual is concluded with a rather extensive, but complete example of
random access operation. The program listed below performs the simple
function of reading or writing random records upon command from the
terminal. Given that the program has been created, assembled, and placed
into a file labelled RANDOM.COM, the CCP level command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name X.DAT (in
this particular case) and, if found, proceeds to prompt the console for input.
If not found, the file is created before the prompt is given. Each prompt takes
the form

next command?

andis followed by operator input, terminated by a carriage return. Theinput
commands take the form

nW nR Q
3-69

where nis aninteger valuein the range 0 t0 65535, and W, R, and Q are simple
command characters corresponding to random write, random read, and quit
processing, respectively. If the W command is issued, the RANDOM
program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by a
carriage return. RANDOM then writes the character stringinto the X. DAT
file at record n. If the R command is issued, RANDOM reads record number
nanddisplays the string value at the console. Ifthe Q command isissued, the
X.DAT file is closed, and the program returns to the console command
processor. In the interest of brevity, the only error message is

error, try again

The program begins with an initialization section where the input file is
opened or created, followed by a continuous loop at the label “ready” where
the individual commands are interpreted. The default file control block at
005CH and the default buffer at 0080H are used in all disk operations. The
utility subroutines then follow, which contain the principal input line
processor, called “readc’” This particular program shows the elements of
random access processing, and can be used as the basis for further program
development.

PR R e T R 222202222

. L]
;* sample random access program for cp/m 2.0 *
el L]
;tﬁtitﬁtilttttitttlttltl!llt!ttttt!tlltttﬂ!!!itttt!t

0108 org, 108h ;base of tpa

0000 = reboot equ 8@8sh ;system reboot

8085 = bdos egu 8885h ;bdos entry point
H

0881 = coninp equ 1 ;console input function

gen2 = conout egu 2 ;console output function

8809 = pstring equ 9 ;print string until '$*

goda = rstring equ 19 ;read console buffer

8ooc = version egu 12 ;jreturn version number

goef = openf equ 15 ;file open function

#ele = closef equ 16 ;close function

9816 = make f equ 22 ;make file function

8021 = readr egqu 33 ;read random

8022 = writer equ 34 swrite random

085c = fcb equ #85ch ;default file control block

807d = ranrec eqgu fcb+33 ;random record position

807t = ranovf equ fcb+35 ;high order (overflow) byte

2080 = buff equ 8888h ;buffer address

20e6d = cr egqu edh ;jcarriage return

geda = 1f equ Bah ;line feed
;ﬂ.l!ttﬂﬂl!tt.t!lttt'...lltﬁl.l!ltlﬂ'!.!lt!.itltl'!!
- W x
i* load SP, set-up file for random access *
.k L]
:lt!.ﬂﬁ!nﬂﬂﬂ...tttt.!.!!!ltﬂ!"'tllk.lﬂ!!..tﬂ!tl!.lt

H

3-70

olpe

0103
8185
0198
@10a

@led
elle
8113

8116
2118
0llb
Blle
011f

9122
0124
plev
012a
912b

812e
0131
‘9134

@137
913a
913d
0149
2142
0144

3147
0149
Dli4c
0 14f
2158
2153

31lbch

dedc
cdgse
fe2o
d21é6@

111b#
cddad
clpe0

fedf
115¢0
cdase
3c
c237@

feleé
115ch
cdese
3c
c2370

113a9
cddap
c3ipoe

cde50
22748
217f@
3600
fe51
c2560

veld
115cH
cdese
3c
cab9d
c3ao0e

fe57
c2890

114de
cdda#
felf

21809

1xi sp,stack
H version 2.9?

mvi ¢,version

call bdos

cpi 20h ;version 2.8 or better?

jnc versok
: bad version, message and go back

1xi d,badver

call print

jmp reboot
H
versok:
: correct vetsion for random access

mvi c,openf :open default fcb

1xi d,fcb

call bdos

inc a ;err 255 becomes zero

jnz ready
H
H cannot open file, so create it

mvi c,makef

1xi d,fcb

call bdos

inr a ;err 255 becumes zero

jnz ready
.
*
: cannot create file, directory full

1xi d,nospace

call print

jmp reboot iback to ccp
;iIll.tii..Il!!iiﬁ.i*.!lﬁ.i!!!li.tt.llltitillil.!ll.
% *
r -
;* 1loop back to “ready” after each command *
Iy *®
;!lﬂt!i..illiiitltttltI!lttllhIlil.l.ililll.ll!!*tli
i
ready:
; file is ready for processing
H

call teadcom ;read next command

shld ranrec ;store input record$

1xi h,ranovf

mvi m, 9 ;elear high byte if set

cpi 'Q’ ;quit?

jnz notg
H quit processing, close file

mvi c,closef

1xi d,fcb

call bdos

int a ;jerr 255 becomes

jz error ;jerror message, retry

jmp reboot ;back to ccp
:-llll'l.!ikttlllllillllllll.ilillllilll*l'lﬁﬁii!!ll.
o *
;
;* end of quit command, process write *
[] £]
:.iRl..'lll.l!.il!lllIliilllﬂlll!lllﬂll..ll!‘llllltl!
notq:
: not the guit command, random write?

cpi ‘W'

jnz notw
H this is a random write, fil) buffer until cr

1xi d,datmsg

call print ;data prompt

mvi c,127 ;up to 127 characters

1xi h,buff ;destination

3N

166
0167
0168
0lé6b
81l6c
816d
B1l6f

9172
8173
2174
9175

g178

8l7a
8l7c
817f
8182
2183
8186

8189
918b

018e
0198
0193
196
2197

#19%a
2194
019f

8la2
dla3l
@la4
8la6
f1la9d
flaa
0lab
flad
21b@
f1bl
01b2
21b3
?21b6

21b9

9 1bc
81bf

c5

es
cdc2@
el

cl
fedd
ca78e

77
23
84
c2668

3600

Pe22
115c@
cdose
b7
c2b9e
c3378

fe52
c2b9p

fe2l
115c@
cd@se
b7
c2b9p

cdcfp
fego
218090

11592

cdda®
c3370

rloop:

erloop:

;read next character to buff

push b ;save counter

push h ;next destination
call getchr ;character to a
pop h ;jrestore counter
pop b ;restore next to fill
cpi cr ;end of line?

jz erloop

not end, store character

mov m,a

inx h ;next to fill

dcr c jcounter goes down
jnz. rloop ;end of buffer?

end of read loop, store 00
mvi m,8

write the record to selected record number

mvi c,writer

1xi d,fch

call bdos

ora a jerror code zero?
jnz error ;message if not

jmp ready ;for another record

H
b A R R R I I

*

H

;* end of write command, process read
;i

H

*
*
*

AR R E s R R R R 22T

notw:

;

wloop:

H

error:

not a write command, read record?
cpi '‘R*
jnz error ;skip if not

read random record

mvi c,readr

1xi d,fcb

call bdos

ora a ;return code 99?
jnz error

read was successful, write to console
call crlf ;new line

mvi c,128 ;max 128 characters
1xi h,buff ;next to get

mov a,m ;jnext character

inx h jhext to get

ani 7fh ;jmask parity

jz ready ;for another command if @@
push b ;save counter

push h ;save next to get
cpi ' ;graphic?

cnc putchr ;skip output if not
pop h

pop b

decr [+ jcount=count-1

jnz wloop

jmp ready

L]

*
;* end of read command, all errors end-up here
L]

L]

1xi d,errmsg
call print
jmp ready

3-72

LR R R e e e R R e R R R RS E2dR2 R2 R sl

*

*
»

AN AR A NN R AN AN AN A AR AN R AR AR R AR AN N NN R R SR A AN N

i
PR N N A R A N AN AR RN RN I RN R AR Rk R AR AR R AR R RN R AR R RN RN

oW *
i* utility subroutines for console i/o *
. ® £l
;i!tliti!tiii'tﬁ!ti!!!!!!t!tnttlil!lillilllili!!!!ii
getchr:
;read next console character to a
81lc2 Pedl mvi c,coninp
81lcd cdese call bdos
@lc7 c9 ret
putchr:
;write character from a to console
21c8 @ed2 mvi c,conout
@lca S mov e,a ;character to send
0lcb cdese call bdos ;send character
8lce c9 ret
crlf:
;send carriage return line feed
0lcf 3e@d mvi a,cr ;carriage return
01dl cdcse call putchr
01d4 3eba mvi a,lf ;line feed
P1d6 cdcBe call putchr
0149 c9 ret
print:
;print the buffer addressed by de until §
#lda 45 push d
#1db cdcfe call crlf
flde dl pop d ;new line
01df 0ded9 mvi c,pstring
@lel cdese call bdos ;print the string
0led c9 ret
readcom:
;read the next command line to the conbuf
0le5 lié6bo Ixi d,prompt
8le8 cddad call print ;command?
fleb deda mvi c,rstring
fled 117a8 1xi d,conbuf
01£0 cdesé call bdos ;read command line
H command line is present, scan it
01£3 21000 1xi h,0 ;jstart with @000
01f6 117c@ 1xi d,conlin;command line
01f9 la readc: ldax d snext command character
01fa 13 inx a ;to next command position
81fb b7 ora a ;cannot be end of command
0lfc c8 rz
H not. zero, numeric?
A1fd de3e sui '
81ff fepa cpi 10 ;carry if numeric
9201 d2139 jne endrd
: add-in next digit
0204 29 dad h ;%2
0205 44 mov c,l
0206 44 mov b,h ;bc = value * 2
02087 29 dad h ;%4
0208 29 dad h ;*8
0209 99 dad b ;%2 + *8 = *10
829a 85 add 1 s+digit
028b 6f mov 1,a
020c d2£9¢ jnc readc ;for another char
820f 24 inr h ;overflow
9219 c3f99 jmp readc ;for another char
endrd:
H end of read, restore value in a
0213 c639 adi ‘e’ ;command
9215 febl cpi 'a' ;translate case?

3-73

6217 d8 re
H lower case, mask lower case bits

0218 e65¢f ani 101s1111b

p2la c9 ret
;iiiititiiilt!!l!!tﬂliﬁitiﬁl!ﬂiiﬂﬂﬁﬂﬁiiﬂﬂiliﬂl!tiii.
N ®
;¥ string data area for console messages *
-k "
;itliittt.tltilliliﬂll..llt!iﬂtﬂ!!ﬂﬁ!lltiﬂi.!ll.llil
adver:

021b 536£79 ab ‘sorry, you need cp/m version 2§°
nospace:

023a 4e6f29 db ‘no directory space$’
datmsg:

8243 547970 db ‘type data: §$'
errmsg:

0259 457272 db ‘error, try again,$'
prompt:

926b 4e6578 db ‘next command? §'
;’!lI*ii!kttll!iﬂlltt.l!t!il!itﬂttItlﬁ..ﬂ!!!tll!ittlt
.k -
;* fixed and variable data area *
- ® *
;I!iﬁlttl.ItﬁtlitlIilliﬂtl!lltlll.llttlﬁitttﬁlltitl!

B827a 21 conbuf: db conlen ;length of console buffer

027b consiz: ds 1 ;resulting size after read

827c conlin: ds 32 slength 32 buffer

9021 = conlen equ $-consiz

829c ’ ds 32 116 level stack
stack:

@ 2be end

Again, major improvements could be made to this particular program to
enhance its operation. In fact, with some work, this program could evolve
into a simple data base management system. One could, for example, assume
a standard record size of 128 bytes, consisting of arbitrary fields within the
record. A program, called GETKEY, could be developed which first reads a
sequential file and extracts a specific field defined by the operator. For
example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the “LASTNAME?" field from each record, starting at position 10 and ending
at character 20. GETKEY builds a table in memory consisting of each
particular LASTNAME field, along with its 16-bit record number location
within the file. The GETKEY program then sorts this list, and writes a new
file, called LASTNAME.KEY, which is an alphabetical list of LASTNAME
fields with their corresponding record numbers. (This list is called an
“inverted index” in information retrieval parlance.)

Rename the program shown above as QUERY, and massage it a bit so that
it reads a sorted key file into memory. The command line might appear as:

QUERY NAMES.DAT LASTNAME.KEY
3-74

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base. Since
the LASTNAME.KEY list is sorted, you can find a particular entry quite
rapidly by performing a “binary search] similar to looking up a name in the
telephone book. That is, starting at both ends of the list, you examine the
entry halfway in between and, if not matched, split either the upper half or
the lower half for the next search. You’ll quickly reach the item you’re
looking for (in log2(n) steps) where you'll find the corresponding record
number. Fetch and display thisrecord at the console, just as we have done in
the program shown above.

At this point you’re just getting started. With a little more work, you can
allow a fixed grouping size which differs from the 128 byte record shown
above, This is accomplished by keeping track of the record number as well as
the byte offset within the record. Knowing the group size, you randomly
access the record containing the proper group, offset to the beginning of the
group within the record read sequentially until the group size has been
exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and
an AGE less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory, randomly access
your key files from the disk as well. One note of consolation after all this
work: if you make it through the project, you’ll have no more need for this
manual!

3-75

System Function Summary

INPUT OUTPUT

FUNC FUNCTION NAME PARAMETERS RESULTS

0 System Reset none none

1 Console Input none A =char

2 Console OQutput E=char none

3 Reader Input none A =char

4 Punch Output E=char none

5 List Output E =char none

6 Direct Console I/0 see def see def

7 Get 170 Byte none A=IOBYTE

8 Set 170 Byte E=IOBYTE none

9 Print String DE = .Buffer none
10 Read Console Buffer DE =.Buffer see def
11 Get Console Status none A=00/FF
12 Return Version Number none HL = Version*
13 Reset Disk System none see def
14 Select Disk E =Disk Number see def
15 Open File DE=.FCB A =Dir Code
16 Close File DE=.FCB A =Dir Code
17 Search for First DE=.FCB A =Dir Code
18 Search for Next none A =Dir Code
19 Delete File DE=.FCB A =Dir Code
20 Read Sequential DE=.FCB A =Err Code
21 Write Sequential DE=.FCB A=Err Code
22 Make File DE=.FCB A =Dir Code
23 Rename File DE=.FCB A =Dir Code
24 Return Login Vector none HL = Login Vect*
25 Return Current Disk none A=Cur Disk#
26 Set DMA Address DE=.DMA none
27 Get Addr(Alloc) none HL =.Alloc
28 Write Protect Disk none see def
29 Get R/0O Vector none HL=R/O Vect*
30 Set File Attributes DE=.FCB see def
31 Get Addr (disk parms) none HL=.DPB
32 Set/Get User Code see def see def
33 Read Random DE=.FCB A=Err Code
34 Write Random DE=.FCB A=Err Code
35 Compute File Size DE=.FCB 10, rl, r2
36 Set Random Record DE=.FCB r0, rl, r2

*Note that A=L, and B=H upon return

3-76

CHAPTER 3
CP/M EDITOR

* Introduction to ED

* ED Operation

* Text Transfer Functions

* Memory Buffer Organization

* Memory Buffer Operation

* Command Strings

 Text Search and Alteration

* Source Libraries

* Repetitive Command Execution
* ED Error Conditions

* Summary of Control Characters
* Summary of ED Commands

* ED Text Editing Commands

3-77

3-78

Introduction to ED

ED is the context editor for CP/M, and is used to create and alter CP/M
source files. ED is initiated in CP/M by typing

(filename)
ED
(filename)+(filetype)

In general, ED reads segments of the source file given by (filename) or
(filename) * {filetype) into central memory, where the file is manipulated by
the operator, and subsequently written back to disk after alterations. If the
source file does not exist before editing, it is created by ED and initialized to
empty. The overall operation of ED is shown in Figure 1.

ED Operation

ED operates upon the source file, denoted in Figure 1 by x.y, and passes all
text through a memory buffer where the text can be viewed or altered (the
number of lines which can be maintained in the memory buffer varies with
the line length, but has a taotal capacity of about 6000 characters in a 16K
CP/M system). Text material which has been edited is written onto a
temporary work file under command of the operator. Upon termination of
the edit, the memory buffer is written to the temporary file, followed by any
remaining (unread) text in the source file. The name of the original file is
changed from x.y to x. BAK so that the most recent previously edited source
file can be reclaimed if necessary (see the CP/M commands ERASE and
RENAME). The temporary file is changed from x.$$$ to x.y which becomes
the resulting edited file.

The memory huffer is logically between the source file and working file as
shown in Figure 2.

Text Transfer Functions

Given that n is an integer value in the range 0 through 65535, the following
ED commands transfer lines of text from the source file through the memory
buffer to the temporary (and eventually final) file:

3-79

Figure 1. Overall ED Operation

Source
Libraries

Source Append (R) Write Temporary
File (A)\ Y /9 File
X.Yy
| Memory Buffer '
| J—— |
[= |
After —_ After
gait | (B) — Edit : (E)
|
Insert Type *
(1) (T)
Backup New
File Source
File

- \x_u
| ey I

Note: the ED program accepts both lower and upper case ASCII characters
asinput from theconsole. Single letter commands can be typed in either case.
The U command can be issued to cause ED to translate lower case
alphabetics to upper case as characters are filled to the memory buffer from
the console. Characters are echoed as typed without translation, however.
The -U command causes ED to revert to “no translation” mode. ED starts
with an assumed -U in effect.

3-80

SP

w N

—

Figure 2. Memory Buffer Organization

Source File

First Line.

\"Appended . |
TaTaY L N
- que§\ N

. N\ N

2| > Buffered)|

Memory Buffer

' First Line

SN N
P Text p
R \\

A

NN N

Free

=
3
o]
B!
%

Next
Write

TP

ol RS

Temporary File

N\ First Line\

—

\Processed'o
_\\'I‘ext\\\
NN N N

N\ 5

Free File

Space

Figure 3. Logical Organization of Memory Buffer

Memory Buffer

first
line

current
line CL

last
line

cp

-—=—-—=-==<cr><1lf>

memme——=<cr><1£>

——=———-=<cr><1f£f>

————— A ———e—me<or><1f>

3-81

nA{cr)* Append the next n unprocessed source lines from the source
file at SP to the end of the memory buffer at MP. Increment
SP and MP by n.

nW{cr) Write the first n lines of the memory buffer to the temporary
file free space. Shift the remaining lines n + 1 through MP to
the top of the memory buffer. Increment TP by n.

E{cr) End the edit. Copy all buffered text to temporary file, and
copy all unprocessed source lines to the temporary file.
Rename files as described previously.

H{er) Move to head of new file by performing automatic E
command. Temporary file becomes the new source file, the
memory bufferisemptied, and a new temporary fileiscreated
(equivalent to issuing an E command, followed by a
reinvocation of ED using x.y as the file to edit}.

O(er) Return to original file. The memory buffer is emptied, the
temporary file is deleted, and the SP is returned te position 1
of the source file. The effects of the previous editing
commands are thus nullified.

Q{er) Quit edit with no file alterations, return to CP/M.

There are a number of special cases to consider. If the integer i is omitted in
any ED command where an integer is allowed, then 1 is assumed. Thus, the
commands A and W append one line and write 1 line, respectively. In
addition, if a pound sign (# } is given in the place of n, then the integer 65535
is assumed (the largest value for n which is allowed). Since most reasonably
sized source files can be contained entirely in the memory buffer, the
command # A is often issued at the beginning of the edit to read the entire
source file to memory. Similarly, the command # W writes the entire buffer
to the temporary file. Two special forms of the A and W commands are
provided as a convenience. The command 0A fills the current memory buffer
to at least half-full, while OW writes lines until the buffer is at least half
empty. Itshould also be noted that an error isissued if the memory buffer size
is exceded. The operator may then enter any command (such as W) which
does not increase memory requirements. The remainder of any partial line
read during the overflow will be brought into memory on the next successful

append.

*(er)represents the carriage-return key

3-82

Memory Buffer Organization

The memory buffer can be considered a sequence of source lines brought in
with the A command from a source file. The memory buffer hasan associated
(imaginary) character pointer (CP) which moves throughout the memory
buffer under command of the operator. The memory buffer appearslogically
asshown in Figure 3 where the dashes represent characters of the source line
of indefinite length, terminated by carriage return ({cr)) and line feed ({1f))
characters, and A represents the imaginary character pointer. Note that the
CPis always located ahead of the first character of the first line, behind the
last character of the last line, or between two characters. The current line CL
is the source line which contains the CP.

Memory Buffer Operation

Upon initiation of ED, the memory bufferisempty (i.e., CPisboth ahead and
behind the first and last character). The operator may either append lines (A
command) from the source file, or enter the lines directly from the console
with the insert command

I{cr)

ED then accepts any number of input lines, where each line terminates with
a {cr) (the (If) is supplied automatically), until a control-z (denoted by 1z)
is typed by the operator. The CP is positioned after the last character
entered. The sequence

Icr)

NOW IS THE(cr)
TIME FOR(er)

ALL GOOD MEN(cr)
Tz

leaves the memory buffer as shown below

NOW IS THE{cr){lf)
TIME FOR{cr){If)
ALL GOOD MEN(Cr)(lf)c‘p

Various commands can then be issued which manipulate the CP or display
source text in the vicinity of the CP. The commands shown below with a
preceding nindicate that an optional unsigned value can be specified. When
preceded by * , the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced by 65535. Ifan
integer n is optional, but not supplied, then n =1is assumed. Finally, ifa plus
sign is optional, but none is specified, then + is assumed.

383

+ B{(er)

+nC{cr)

+nD{cr)

+nK{cr)

+nL{cr)

+nT{(cr)

+n{cr)

move CP to beginning of memory bufferif +,and to bottom
if -.

move CP by *n characters (toward front of buffer if +),
counting the {cr)(If) as two distinct characters.

delete n characters ahead of CP if plus and behind CP if
minus.

kill (i.e. remove) xn lines of source text using CP as the
current reference. If CP is not at the beginning of the current
line when K is issued, then the characters before CP remain
if + is specified, while the characters after CP remain if - is
given in the command.

if n = 0, move CP to the beginning of the current line (if it is
notalready there). If n #0, first move the CP to the beginning
of the current line, and then move it to the beginning of the
line which is n lines down (if +) or up (if -). The CP will stop
at the top or bottom of the memory bufferif too large a value
is specified.

If n=0 then type the contents of the current line up to CP. If
n=1then type the contents of the current line from CP to the
end of the line. If n>>1 then type the current line along with
n-1 lines which follow, if + is specified. Similarly, if n>1 and
- is given, type the previous n lines, up to the CP. The break
key can be depressed to abort long type-outs.

equivalent to = nLT, which moves up or down and types a
single line.

Command Strings

Any number of commands can be typed contiguously (up to the capacity of
the CP/M console buffer), and are executed only after the {cr) is typed.
Thus, the operator may use the CP/M console command functions to
manipulate the input command.

Rubout

remove the last character

Control-X delete the entire line

Control-C

re-initialize the CP/M System

3-84

Control-E return carriage for long lines without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown in the previous
section, with the CP following the last character of the buffer. The command
strings shown below produce the results shown to the right.

Command String Effect Resulting Memory Buffer

B2T{cr) move to beginning of ANOW IS THE(cr)(If)
buffer and type 2 lines: TIME FOR{cr){If)
“NOW IS THE ALL GOOD MEN(cr)(If)
TIME FOR”

5C0T{cr) move CP 5 characters and NOW I AS THE (cr)(If)
type the beginning of the
line “NOW I”

2L-T{cr) move two lines down and NOW IS THE (cr)(If)
type previous line TIME FOR{cr){If)
“TIME FOR” A ALL GOOD MEN(cr)(If)

-L#K{cr) move up one line, delete ~ NOW IS THE(cr)(If) 4
65535 lines which follow

I{cr) insert two lines NOW IS THEcr)(If)

TIME TO{cr) of text TIME TO{cr){If)

INSERT(cr) INSERT{(cr){1H) 4

Tz

-2L#T{cr) move up two lines, and type NOW IS THE(cr)<1f)4
65535 lines ahead of CP TIME TO{cr){If)

“NOW IS THE” INSERT{cr)If)

{cr) move down one line NOW IS THEcr)(If)
and type one line TIME TO(cr){If)&
“INSERT” INSERT (cr)(If)

3-85

Text Search and Alteration

ED also hasa command which locates strings within the memory buffer. The
command takes the form
nF ciey. .. ¢y {<g>}

where ¢; through ¢, represent the characters to match followed by either a
(cr) or control -z* ED starts at the current position of CP and attempts to
match allk characters. The matchis attempted n times, and if successful, the
CP is moved directly after the character c,. If the n matches are not
successful, the CP is not moved from its initial position. Search strings can
include 11 (control-1), which is replaced by the pair of symbols (er) (If).

The following commands illustrate the use of the F command:

Command String Effect Resulting Memory Buffer
B#T{(cr) move to beginning A NOW IS THE (cr)(If)

and type entire TIME FOR (cr){If)

buffer ALL GOOD MEN {cr){If)
FS T{cr) find the end of NOW IS TAHE(cr)(if)

the string “S T”
FI1z0TT find the next “I” and type NOW IS THE(cr)(If)

to the CP then type the TIAME FOR({cr){If)
remainder of the current ALf‘ GOOD MEN (cr){If)
line: “TIME FOR”

An abbreviated form of the insert command is also allowed, which is often
used in conjunction with the F command to make simple textual changes.
The form is:

Icieg...cutz or
Tcges.. . ep{er)

where c; through c, are characters to insert. If the insertion string is
terminated by a 1z, the characters ¢, through c, are inserted directly
following the CP,and the CP is moved directly after character cy- The action
is the same if the command is followed by a {cr) except that a {cr){if) is
automatically inserted into the text following character c,,. Consider the
following command sequences as examples of the F and I commands:

*The control-z is used if additional commands will be typed following the 1z.

3-86

Command String Effect Resulting Memory Buffer
BITHISIS ! z(cr%

nsert “THIS 1S” THIS IS A NOW THE(cr){If)
at the beginning TIME FOR {er)(if)
of the text ALL GOOD MEN({cr)(If)
FTIME 'z-4DIPLACEz{cr) THIS IS NOW THE(cr){if)

find “TIME” and delete ~ PLACE AFOR(cr){If)
it; then insert “PLACE” ALL GOOD MEN{er)(If)

3F01z-3D5SDICHANGES{cr) THIS IS NOW THE(cr){If)
find third occurrence of PLACE FOR{cr){}If)
“0” (i.e. the second “0” in ALL CHANGES 4 {(cr)(lf)

GOOD), delete previous 3

characters; then insert

“CHANGES”

-8CISOURCE {cr)
move back 8 characters THIS 1S NOW THE (cr){If)
and insert the line PLACE FOR{cr){If)
“SOURCE{cr){if)” ALL SOURCE({er){If)
& CHANGES{er)(1f)

ED also provides a single command which combines the F and] commands
to perform simple string substitutions. The command takes the form

n SCICZ e CkTZdldz. . dm {<(T:;>}
and has exactly the same effect as applying the command string

Fecs. .. cxlz-kDIdyds . . dig {<$;>}

a total of n times. That is, ED searches the memory buffer starting at the
current position of CP and successively substitutes the second string for the
first string until the end of buffer, or until the substitution has been
performed n times.

As a convenience, a command similar to F is provided by ED which
automatically appends and writes lines as the search proceeds. The form is

nNclcz...ck{<g>}

3-87

which searches the entire source file for the nth occurrence of the string c1Co
. .. ¢k (recall that F fails if the string cannot be found in the current buffer).
The operation of the N command is precisely the same as F except in the case
that the string cannot be found within the current memory buffer. In this
case, theentire memory contentsis written (i.e.,an automatic # W isissued).
Input lines are then read until the buffer is at least half full, or the entire
source file is exhausted. The search continues in this manner until the string
has been found n times, or until the source file has been completely
transferred to the temporary file.

A final line editing function, called the juxtaposition command takes the
form

ndeicy...cxlz didy...dptz ejey...eq 3<g>$

with the following action applied n times to the memory buffer: search from
the current CP for the next occurrence of thestring ¢; co. . . ¢i. If found, insert
thestringd;,dy. . .,dp,, and move CP to follow d,,,. Then delete all characters
. following CP up to (but not including) the string ey, e, . . . g leaving CP
directly after dp,. If e, e, . . . 4 cannot be found, then no deletion is made. If
the current line is

A NOW IS THE TIME(cr)(If)
Then the command

JW 1zZWHAT" 211 (er)

Results in
NOW WHAT 4 (cr)(If)

(Recall that 1l represents the pair (cr)(If) in search and substitution
strings).

It should be noted that the number of characters allowed by EDin the F, S,
N, and J commands is limited to 100 symbols.

Source Libraries

ED also allows the inclusion of source libraries during the editing process
with the R command. The form of this command is

3-88

o

Rfify. . £,z or
R fify. . fyer)
wherefifs . . f,,is the name of a source file on the disk with an assumed filetype
of ‘LIB. ED reads the specified file, and places the characters into the

memory buffer after CP, in a manner similar to the I command. Thus, if the
command

RMACRO(cr)

is issued by the operator, ED reads from the file MACRO.LIB until the
end-of-file,and automatically inserts the charactersinto the memory buffer.

Repetitive Command Execution

The macro command M allows the ED user to group ED commands together
for repeated evaluation. The M command takes the form:

nMc1c2...ck{<g>}

where cjcy . . . ¢} represent a string of ED commands, not including another
M command. ED executes the command string n timesifn)1. If n=0or 1, the
command string is executed repetitively until an error condition is
encountered (e.g., the end of the memory buffer is reached with an F
command).

As an example, the following macro changes all occurrences of GAMMA to
DELTA within the current buffer, and types each line which is changed:

MFGAMMA1z-5DIDELTA?z0TT (cr)
or equivalently

MSGAMMA1zDELTAz0TT(cr)

ED Error Conditions

On error conditions, ED prints the last character read before the error, along
with an error indicator:

? unrecognized command

3-89

> memory buffer full (use one of the commands D, K, N, S, or
W to remove characters), F, N, or S strings too long.

cannot apply command the number of times specified (e.g.,in
F command)

0 cannot open LIB file in R command

Cyclic redundancy check (CRC) information is written with each output
record under CP/M in order to detect errors on subsequent read operations.
If a CRC error is detected, CP/M will type

PERM ERR DISK d

where d is the currently selected drive (A, B, . . .). The operator can choose
to ignore the error by typing any character at the console (in this case, the
memory buffer data should be examined to see if it was incorrectly read), or
the user can reset the system and reclaim the backup file, if it exists. The file
can be reclaimed by first typing the contents of the BAK file to ensure that
it contains the proper information:

TYPE x.BAK{cr)
where x is the file being edited. Then remove the primary file:
ERA x.y{cr)
and rename the BAK file:
REN x.y=x.BAK(cr)

The file can then be re-edited, starting with the previous version.

Summary of Control Characters

The following table summarizes the Control characters and commands
available in ED:

Control Character Function

N
Te system reboot
Te physical (er){{f) (not actually entered in
command)

3-90

M logical tab {(cols 1, 8,15,...)

1 logical {cr){If) in search and substitute strings
1x line delete
Tz string terminator
rubout character delete
break discontinue command {e.g., stop typing)

Summary of ED Commands

Command Funection
nA append lines
+B begin bottom of buffer
+nC move character positions
+nD delete characters
E end edit and close files (normal end)
nF find string
H end edit, close and reopen files
| insert characters
nd place strings in juxtaposition
+nK kill lines
+nL move down/up lines
nM macro definition
nN find next occurrence with autoscan

391

0 return to original file

+nP move and print pages
Q quit with no file changes
R read library file
nS substitute strings
+=nT type lines
U tliajmslate lower to upper case if U, no translation if
nW write lines
nZ sleep
+n{cr) move and type (+nLT)

ED Text Editing Commands

The ED context editor contains a number of commands which enhance its
usefulnessin text editing. Theimprovements are found in the addition of line
numbers, free space interrogation, and improved error reporting.

The context editor issued with CP/M producesabsolute line number prefixes
when the “V” (Verify Line Numbers) command is issued. Following the V
command, the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the
memory buffer is empty, or if the current line is at the end of the memory
buffer, then nnnnn appears as 5 blanks.

The user may reference an absolute line number by preceding any command
by a number followed by a colon, in the same format as the line number
display. In this case, the ED program moves the current line reference to the
absolute line number, if the line exists in the current memory buffer. Thus
the command

3-92

345:T
is interpreted as “move to absolute line 345, and type the line” Note that
absolute line numbers are produced only during the editing process, and are

not recorded with the file. In particular, the line numbers will change
following a deleted or expanded section of text.

The user may also reference an absolute line number as a backward or
forward distance from the current lineby preceding the absolute linenumber
by a colon. Thus, the command

:400T
isinterpreted as “type from the current line number through the line whose

absolute number is 400 Combining the two line reference forms, the
command

345::400T

for example, is interpreted as “move to absolute line 345, then type through
absolute line 400" Note that absolute line references of this sort can precede
any of the standard ED commands.

A special case of the V command, “0V’’ prints the memory buffer statistics
in the form:

free/total

where “free” is the number of free bytes in the memory buffer (in decimal),
and “total” is the size of the memory buffer.

ED also includes a “block move” facility implemented through the “X”
(Xfer) command. The form

nX
transfers the next n lines from the current line to a temporary file called

X$$35835.L1B

which is active only during the editing process. In general, the user can
reposition the current line reference to any portion of the source file and
transfer lines to the temporary file. The transferred lines accumulate one
after another in this file, and can be retrieved by simply typing:

3-93

R

which is the trivial case of the library read command. In this case, the entire —.
transferred set of hines is read into the memory buffer. Note that the X
command does not remove the transferred lines from the memory buffer,
although a K command can be used directly after the X, and the R command

does not empty the transferred line file. That is, given that a set of lines has

been transferred with the X command, they can be re-read any number of
times back into the source file. The command

0X
is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through Control-C, the LIB
file will exist if lines have been transferred, but will generally be empty (a
subsequent ED invocation will erase the temporary file).

Due to common typographical errors, ED requires several potentially
disastrous commands to be typed as single letters, rather than in composite
commands. The commands

E (end), H (head), O (original), Q (quit)
must be typed as single letter commands.
ED also prints error messages in the form
BREAK “x” AT ¢

where xisthe error character, and cisthe command where the error occurred.

3-94

CHAPTER 4
CP/M Assembler

 Introduction

* Program Format

* Forming the Operand
Labels
Numeric Constants
Reserved Words
String Constants
Arithmetic and Logical Operators
Precedence of Operators

» Assembler Directives
The ORG Directive
The END Directive
The EQU Direective
The Set Directive
The IF and ENDIF Directives
The DB Directive
The DW Directive

* Operation Codes
Jumps, Calls and Returns
Immediate Operand Instructions
Increment and Decrement Instructions
Data Movement Instructions
Arithmetic Logie Unit Operations
Control Instructions

* Error Messages

—~ * A Sample Session

3-95

3-96

Introduction

The CP/M assembler reads assembly language source files from the diskette,
and produces 8080 machine language in Intel hex format. The CP/M
assembler is initiated by typing

ASM filename
or
ASM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name

filename.ASM

which contains an 8080 assembly language source file. The first and second
forms shown above differ only in that the second form allows parameters to
be passed to the assembler to control source file access and hex and print file
destinations.

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first command, the
assembler reads the source file with assumed file type “ASM” and createstwo
output files.

filename. HEX
and
filename.PRN

The “HEX” file contains the machine code corresponding to the original
program in Intel hex format, and the “PRN” file contains an annotated
listing showing generated machine code, error flags, andsource lines. Iferrors
occur during translation, they will be listed in the PRN file as well as at the
console.

The second command form can be used to redirect input and output files
from their defaults. In this case, the “parms” portion of the command is a
three letter group which specifies the origin of the source file, the destination
of the hex file, and the destination of the print file. The form is

filename.plp2p3

3-97

where pl, p2, and p3 are single letters

pl: AB,.., Y designates the disk name which contains
the source file

p2: AB, .., Y designates the disk name which will receive
the hex file
Z skips the generation of the hex file

p3: A,B, .., Y designates the disk name which will receive
the print file
X places the listing at the console
Y/ skips generation of the print file

Thus, the command

ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and the print (X.PRN) files are to be created also on disk
A. This form of the command is implied if the assembler is run from disk A.
That is, given that the operator is currently addressing disk A, the above
command is equivalent to

ASM X
The command
ASM X .ABX

indicates that the source file is to be taken from disk A, the hex file is placed
on disk B, and the listing file is to be sent to the console. The command

ASM X.BZZ

takesthe source file from disk B, and skips the generation of the hex and print
files. (This command is useful for fast execution of the assembler to check
program syntax.)

The source program format is compatible with both the Intel 8080 assembler
(macros are not currently implemented in the CP/M assembler, however), as
well as the Processor Technology Software Package #1 assembler. That is,
the CP/M assembler accepts source programs written in either format.
There are certain extensions in the CP/M assembler which make it
somewhat easier to use. These extensions are described below.

3-98

Program Format

An assembly language program acceptableasinput to the assembler consists
of a sequence of statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each
assembly language statement is terminated with a carriage return and line
feed (the line feed is inserted automatically by the ED program), or with the
character “!” which is treated as an end-of-line by the assembler (thus,
multiple assembly language statements can be written on the same physical
line if separated by exclamation symbols).

The line# is an optional decimal integer value representing the source
program line number, which is allowed on any source line to maintain
compatibility with the Processor Technology format. In general, these line
numbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or
identifier:

and is optional, except where noted in particular statement types. The
identifier is a sequence of alphanumeric characters (alphabetics and
numbers), where the first character is alphabetic. Identifiers can be freely
used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All
characters are significant in an identifier, except for the embedded dollar
symbol ($) which can be used to improve readability of the name. Further, all
lower case alphabetics are treated as if they were upper case. Note that the
“.” following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

X Xy long$name
X: yx1: longer$named$data:
X1Y2 X1x2 x23485678$9012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8080 machine operation code. The pseudo operations and
machine operation codes are described below.

3-99

The operand field of the statement, in general, contains an expression formed
out of constants and labels, along with arithmetic and logical operations on
these elements. Again, the complete details of properly formed expressions
are given below.

The comment field contains arbitrary characters following the «;” symbol
until the next real or logical end-of-line. These characters are read, listed,
and otherwise ignored by the assembler. In order to maintain compatibility
with the Processor Technology assembler, the CP/M assemblér also treats
statements which begin with a “*” in column one as comment statements,
which are listed and ignored in the assembly process. Note that the Processor
Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an
ambiguous situation when attempting to be compatible with Intel’s
language, since arbitrary expressions are allowed in this case. Hence,
programs which use this side effect to introduce comments, must be edited
to place a “;” before these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements
of the above form, terminated optionally by an END statement. All
statements following the END are ignored by the assembler.

Forming the Operand

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is used in
nearly all statements. Expressions in the operand field consist of simple
operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly. Further, the
number of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte move immediate instruction,
then the most significant 8 bits of the expression must be zero. The
restrictions on the expression significance are given with the individual
instructions.

Labels

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement which it precedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction,
or a DS pseudo operation), then the label is given the value of the program
address which it labels. If the label precedes an EQU or SET, then the label

3-100

is given the value which results from evaluating the operand field. Except for
the SET statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
assembler. This value can then be combined with other operands and
operators to form the operand field for a particular instruction.

Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called
the radix of the constant, is denoted by a trailing radix indicator. The radix
indicators are

binary constant (base 2)

octal constant (base 8)

octal constant (base 8)
decimal constant (base 10)
hexadecimal constant (base 16)

TOo0w

Q is an alternate radix indicator for octal numbers since theletter Oiseasily
confused with the digit 0. Any numeric constant which does not terminate
with a radix indicator is assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional
radix indicator, where the digits are in the appropriate range for the radix.
That is binary constants must be composed of 0 and 1 digits, octal constants
can contain digits in the range 0 - 7, while decimal constants contain decimal
digits. Hexadecimal constants contain decimal digits as well as hexadecimal
digits A (10D), B (11D), C (12D), D (13D), E (14D), and F (15D). Note that the
leading digit of a hexadecimal constant must be a decimal digit in order to
avoid confusing a hexadecimal constant with an identifier (a leading 0 will
always suffice). A constant composed in this manner must evaluate to a
binary number which can be contained within a 16-bit counter, otherwise it
is truncated on the right by the assembler. Similar to identifiers, imbedded
“g” are allowed within constants to improve their readability. Finally, the
radix indicator is translated to upper case if a lower case letter is
encountered. The following are all valid instances of numeric constants

1234 1234D 1100B 1111$0000$1111$0000B
1234H OFFEH 33770 33%77$22Q
33770 Ofedh 1234d Offffh

3-101

Reserved Words

There are several reserved character sequences which have predefined —
meaningsin the operand field of a statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right.

wn
TLRCImOOm >
=
AT WD - O]

(Again, lower case names have the same values as their upper case
equivalents.) Machine instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions which require
operands, where the specific operand becomes a part of the binary bit pattern
of the instruction (e.g, MOV A,B), the value of the instruction (in this case
MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, MOV produces 40H).

When the symbol “$” occurs in the operand field (not imbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained within the
current logical line.

String Constants

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols (’). All
strings must be fully contained within the current physical line (thus
allowing “!”” symbols within strings), and must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representingit as a double apostrophe (the two keystrokes), which becomes
a single apostrophe when read by the assembler. In most cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a 16-bit constant, with the
second character as the low order byte, and the first character as the high
order byte.

3-102

The value of a character is its corresponding ASCII code. There is no case
translation within strings, and thus both upper and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

’A’ ’AB’ ’ab’ ’c’

2% M 939939 19341
a

'Walla Walla Wash.’

’She said ”Hello” to me.’
’] said "Hello” to her.’

Arithmetic and Logical Operators

The operands described above can be combined in normal algebraic notation
using any combination of properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a+b unsigned arithmetic sum of a and b

a-b unsigned arithmetic difference between a and b
+b unary plus (produces b)
-b unary minus (identical to 0 - b)

a*b unsigned magnitude multiplication of a and b

a/b unsigned magnitude division of a by b

aMODb remainder aftera /b

NOTb logicalinverse of b (all0’sbecome 1's, I'sbecome 0’s),

where b is considered a 16-bit value
aANDbD bit-by-bit logical and of a and b

aORD bit-by-bit logical or of a and b

aXORb bit-by-bit logical exclusive or of a and b

aSHLb the value which results from shifting a to the left by
an amount b, with zero fill

aSHRb the value which results from shifting a to the right

by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric constants,
reserved words, and one or two character strings), or fully enclosed
parenthesized subexpressions such as

10+ 20 10h +37Q L1/3 (L2+4)SHR3
(’a’ and 5fh) + 0’ (B’+B) OR (PSW + M)
(1+(2+c)) shr (A-(B+1))

Note that all computations are performed at assembly time as 16-bit
unsigned operations. Thus, -1 is computed as 0-1 which results in the value
Offffh (i.e., all 1’s). The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add

3-103

immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation “ADI -1” produces an error message (-1
becomes O0ffffh which cannot be represented as an 8 bit value), while “ADI
(-1) AND OFFH” is accepted by the assembler since the “AND” operation
zeroes the high order bits of the expression.

.

Precedence of Operators

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative precedence. The
order of application of operators in unparenthesized expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the
assembler as the fully parenthesized expressions shown to the right below

a*b+c (a*b) + ¢
a+b*c a+ (b*c)
aMODDb*c¢SHLd ((aMODDb) *¢c) SHLd

aORbAND NOTc + dSHL e a OR (b AND (NOT (c + (d SHL e)}))

Balanced parenthesized subexpressions can always be used to override the
assumed parentheses, and thus the last expression above could be rewritten
to force application of operators in a different order as

(aORDb) AND (NOTc¢) + d SHLe
resulting in the assumed parentheses

(aOR b) AND ((NOT c) + (d SHLe))

3-104

Note that an unparenthesized expression is well-formed only if the
expression which results from inserting the assumed parentheses is
well-formed.

Assembler Directives

Assembler directives are used to set labels to specific values during the
assembly, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
“pseudo operation” which appears in the operation field of the line. The
acceptable pseudo operations are

ORG set the program or data origin
END end program, optional start address
EQU numeric “equate”

SET numeric “set”

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DwW define data words

DS define data storage area

The ORG Directive

The ORG statement takes the form
label ORG expression

where “label” is an optional program label, and expression is a 16-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements
within a particular program, and there are no checks to ensure that the
programmer is not defining overlapping memory areas. Note that most
programs written for the CP/M system begin with an ORG statement of the
form

ORG 100H

which causes machine code generation to begin at the base of the CP/M
transient program area. If a label is specified in the ORG statement, then the
label is given the value of the expression (this label can then be used in the
operand field of other statements to represent this expression).

3-105

The END Directive

The END statement is optional in an assembly language program, but ifit —
is present it must be the last statement (all subsequent statements are
ignored in the assembly). The two forms of the END directive are

label END
label END expression

where the label is again optional. If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
0000. Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code “hex” file which results from the assembly).
Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient
program area).

The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular
numeric values. The form is

label EQU expression

where the label must be present, and must not label any other statement.
The assembler evaluates the expression, and assigns this value to the
identifier given in the label field. The identifier is usually a name which
describes the value in a more human-oriented manner. Further, this name is
used throughout the program to “parameterize” certain functions. Suppose
forexample, that data received from a Teletype appears on a particularinput
port, and data is sent to the Teletype through the next output port in
sequence. The series of equate statements could be used to define these ports
for a particular hardware environment

TTYBASE EQU 10H ;BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ;TTY DATAIN ~~
TTYOUT EQU TTYBASE+1;TTY DATA OUT

At a later point in the program, the statements which access the Teletype
could appear as

3-106

IN TTYIN ;READ TTY DATA TO REG - A
6UT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/0 ports had been
used. Further, if the hardware environment isredefined to start the Teletype
communications ports at 7FH instead of 10H, the first statement need only
be changed to

TTYBASEEQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other
statements.

The SET Directive
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occuron other SET statements within the program.
The expression is evaluated and becomes the current value associated with
the label. Thus, the EQU statement defines a label with a single value, while
the SET statement defines a value which is valid from the current SET
statement to the point where the label occurs on the next SET statement.
The use of the SET is similar to the EQU statement, but is used most often
in controlling conditional assembly.

The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language
statements which are to be included or excluded during the assembly
process. The form is

IF expression
statement #1
statement # 2

sta.t;ment #n
ENDIF

Upon encountering the IF statement, the assembler evaluates the
expression following the IF (all operands in the expression must be defined
ahead of the IF statement). If the expression evaluates to a non-zero value,
then statement#1 through statement #n are assembled; if the expression

3-107

evaluates to zero, then the statements are listed but not assembled.
Conditional assembly is often used to write a single “generic” program which
includes a number of possible run-time environments, with only a few
specific portions of the program selected for any particular assembly. The
following program segments for example, might be part of a program which
communicates with either a Teletype or a CRT console (but not both) by
selecting a particular value for TTY before the assembly begins

TRUE EQU OFFFFH ;DEFINE VALUE OF TRUE
FALSE EQU NOTTRUE ;DEFINE VALUE OF FALSE
TTY EQU TRUE ;TRUE IF TTY, FALSE IF CRT
TTYBASE EQU 10H ;BASE OF TTY I/0 PORTS
CRTBASEEQU 20H ;BASE OF CRT I/0 PORTS
IF TTY ;ASSEMBLE RELATIVE TO
TTYBASE

CONIN EQU TTYBASE ;CONSOLEINPUT
CONOUT EQU TTYBASE+1;CONSOLE OUTPUT
ENDIF

IF NOTTTY ;ASSEMBLE RELATIVE TO
CRTBASE
CONIN EQU CRTBASE ;CONSOLEINPUT
CONOUT EQU CRTBASE+1;CONSOLE OUTPUT
ENDIF
IN CONIN ;READ CONSOLE DATA

6UT CONOUT ;WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a
Teletypeis connected, based at port 10H. The statement defining TTY could
be changed to

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

The DB Directive

The DB directive allows the programmer to define initialized storage areas in
single precision (byte) format. The statement form is

label DB el e#2, ..,eH#n
3-108

where e#1 through e #n are either expressions which evaluate to 8-bit values
(the high order eight bits must be zero), or are ASCII strings of length no greater
than 64 characters. There is no practical restriction on the number of expres-
sions included on a single source line. The expressions are evaluated and placed
sequentially into the machine code file following the last program address
generated by the assembler. String characters are similarly placed into memory
starting with the first character and ending with the last character. Strings of
length greater than two characters cannot be used as operands in more
complicated expressions (i.e., they must stand alone between the commas).
Note that ASCII characters are always placed in memory with the parity bit
reset (0). Further, recall that there is no translation from lower to upper case
within strings. The optional label can be used to reference the data area
throughout the remainder of the program. Examples of valid DB statements are

data: DB 01,2345
DB data and 0fth,5,377Q,1 +2+3+4
signon: DB ’please type your name’,cr,lf,0
DB °’AB’SHRS,’C’,’DE’ AND 7FH

The DW Directive

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DwW e#l e#2, ...,e#tn

where e#1 through e #n are expressions which evaluate to 16-bit results.
Note that ASCII strings of length one or two characters are allowed, but
strings longer than two characters disallowed. In all cases, the data storage
is consistent with the 8080 processor: the least significant byte of the
expression is stored first in memory, followed by the most significant byte.
Examples are

doub: DW Offefh,doub + 4,signon-$,255 + 255
DW ’a’, 5, ’ab’,’CD’, 6 shl 8 or 11b

The DS Directive

The DS statement is used to reserve an area of uninitialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subsequent code
generation after the area reserved by the DS. Thus, the DS statement given
above has exactly the same effect as the statement

3-109

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
ORG $ + expression ;MOVE PAST RESERVED AREA

Operation Codes

Assembly language operation codes form the principal part of assembly
language programs, and form the operation field of the instruction. In
general, ASM accepts all the standard mnemonics for the Intel 8080
microcomputer, which are given in detail in the Intel manual 8080 Assembly
Language Programming Manual. Labels are optional on each input line
and, ifincluded, take the value of the instruction addressimmediately before
the instruction is issued. The individual operators are listed briefly in the
following sections for completeness, although it is understood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range of 0-7 which can be
one of the predefined registers A, B,C,D,E, H, L, M, SP,
or PSW.

e8 represents an 8-bit value in the range 0-255

el6 represents a 16-bit value in the range 0-65535

which can themselves be formed from an arbitrary combination of operands
and operators. In some cases, the operands arerestricted to particular values
within the allowable range, such as the PUSH instruction. These cases will
be noted as they are encountered.

In the sections which follow, each operation code is listed in its most general
form, along with a specific example, with a short explanation and special
restrictions.

Jumps, Calls and Returns

The Jump, Call and Return instructions allow several different forms which
test the condition flags set in the 8080 microcomputer CPU. The forms are

JMB el6 JMP L1 Jump unconditionally to label

JNZ el6 JMP L2 Jump on non zero condition to label
JZ el6 JMP 100H Jump on zero condition to label
JNC el6 JNC Li+4 Jump no carry to label

JC el6 Jc L3 Jump on carry to label

JPO el6 JPO §$+8 Jump on parity odd to label

JPE el6 JPE 14 Jump on even parity to label

JP el6 JP GAMMA Jump on positive result to label
3-110

JM el6 JM al
CALL el6 CALL S1
CNZ el6 CNZ 82
CZ el6 CZ 100H
CNC el6 CNC S1+4
CC elé CC 83
CPO el6 CPO $+8
CPE el6 CPE S4
CP el6 CP GAMMA
CM el6 CM Dbl1$c2
RST e3 RST 0
RET

RNZ

RZ

RNC

RC

RPO

RPE

RP

RM

Immediate Operand Instructions

Jump on minus to label

Call subroutine unconditionally
Call subroutine if non zero flag
Call subroutine on zero flag
Call subroutine if no carry set
Call subroutine if carry set

Call subroutine if parity odd
Call subroutine if parity even
Call subroutine if positive result
Call subroutine if minus flag

Programmed “restart,” equivalent to
CALL 8*e3, except one byte call

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result
Return if minus flag is set

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on

the accumulator (register A).

MVIe3e8 MVI B,255
ADIe8 ADI 1

ACI e8 ACI OFFH

SUT e8 SUI L+3
SBIe8 SBI LANDIB
ANI e8 ANI $ AND 7FH

\ XRIe8 XRI 1111$0000B

ORI e8 ORI LAND1+1

Move immediate data to register A,
B,C,D,E,H, L, or M (memory)
Add immediate operand to A with-
out carry

Add immediate operand to A with
carry

Subtract from A without borrow
(carry)

Subtract from A with borrow (carry)
Logical “and” A with immediate
data

“Exclusive or” A with immediate
data

Logical “or” A with immediate data

3-111

CPIe8 CPI ’a’

LXIe3,el6 LXI B,100H

Compare A with immediate data
(same as SUT except register A not
changed)

Load extended immediate to register
pair (e3 must be equivalent to
B,D,H, or SP)

Increment and Decrement Instructions

Instructions are provided in the 8080 repertoire for incrementing or
decrementing single and double precision registers. The instructions are

INR e3 INR E

DCR e3 DCR A
INX e3 INX SP
DCX e3 DCX B

Data Movement Instructions

Single precision increment register
(e3 produces one of A,B,C, D, E, H,
L, M)

Single precision decrement register
(e3 produces one of A, B,C, D, E, H,
L,M)

Double precision increment register
pair (e3 must be equivalent to
B,D.H, or SP)

Double precision decrement register
pair (e3 must be equivalent to
B,D,H, or SP)

Instructions which move data from memory to the CPU and from CPU to

memory are given below

MOV e3,e3 MOV AB
LDAX e3 LDAX B
STAX e3 STAX D
LHLD el6 LHLD L1
SHLD el6 SHLD L5+x

Move data to leftmost element
from rightmost element (e3
produces one of A, B, C, D, E, H,
L,or M). MOV M,M is disallowed
Load register A from computed
address (e3 must produce either B
or D)

Store register A to computed
address (e3 must produce either B
or D)

Load HL direct from location el6
(double precision load to H and
L)

Store HL direct to location el6
(double precision store from H
and L to memory)

3-112

LDA el6
STA el6

POP e3

PUSH e3

IN e8
OUT 8
XTHL
PCHL
SPHL

XCHG

LDA Gamma
STA X3-5

POP PSW

PUSHB

IN 0
OoUT 255

Arithmetic Logic Unit Operations

Load register A from address el6
Store register A into memory at
el6

Load register pair from stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Store register pair into stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Load register A with data from
port e8

Send data from register A to port
e8

Exchange data from top of stack
with HL

Fill program counter with data
from HL

Fill stack pointer with data from
HL

Exchange DE pair with HL pair

Instructions which act upon the single precision accumulator to perform
arithmetic and logic operations are

ADD e3

ADC e3
SUB e3
SBB e3
ANA e3

XRA e3
ORA e3

CMP e3
DAA

CMA

ADD B

ADC L
SUB H
SBB 2
ANA 1+1

XRA A
ORA B

CMP H

3-113

Add register given by e3 to ac-
cumulator without carry (e3
must produce oneof A,B,C,D,E,
H,or L)

Add register to A with carry, e3 as
above

Subtract reg e3 from A without
carry, e3 is defined as above
Subtract register e3 from A with
carry, e3 defined as above
Logical “and” reg with A, e3 as
above

“Exclusive or’with A,e3 asabove
Logical “or” with A, e3 defined as
above

Compare register with A, e3 as
above

Decimal adjust register A based
upon last arithmetic logic unit
operation

Complement the bitsin register A

STC
CMC
RLC

RRC

RAL
RAR

DAD e3

DAD B

Control Instructions

Set the carry flag to 1
Complement the carry flag
Rotate bits left, (re)set carry as a
side effect (high order A bit
becomes carry)

Rotate bits right, (re)set carry as
gide effect (low order A bit
becomes carry)

Rotate carry/A register to left
(carry is involved in the rotate)
Rotate carry/A register to right
(carry is involved in the rotate)

Double precision add register
pair e3 to HL (e3 must produce B,
D, H, or SP)

The four remaining instructions are categorized as control instructions, and
are listed below

Error Messages

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system
No operation

When errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The line
in error is also echoed at the console so that the source listing need not be
examined to determine if errors are present. The error codes are

D

Data error: element in data statement cannot be
placed in the specified data area

Expression error: expression is ill-formed and
cannot be computed at assembly time

Label error: label cannot appear in this context
(may be duplicate label)

Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version

0 Overflow: expression is too complicated (i.e., too
many pending operators) to compute; simplify it

P Phase error: label does not have the same value on
two subsequent passes through the program

R Register error: the value specified as a registeris not
compatible with the operation code

\Y Value error: operand encountered in expression is
improperly formed

Several error messages are printed which are due to terminal error conditions

NO SOURCE FILE
PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME
ERROR

SOURCE FILE READ
ERROR

OUTPUT FILE WRITE
ERROR

CANNOT CLOSE FILE

P

The file specified in the ASM command does
not exist on disk

The disk directory is full; erase files which are
not needed, and retry

Improperly formed ASM file name (e.g., it is
specified with “?” fields)

Source file cannot be read properly by the
assembler, execute a TYPE to determine the
point of error

Output files cannot be written properly, most
likely cause is a full disk; erase and retry

Output file cannot be closed, check to see if
disk is write protected

3-115

A Sample Session

The following session shows interaction with the assembler and debuggerinthe
development of a simple assembly language program.

ASM SORT Assemble SORT. ASM
CP/M ASSEMBLER - YER 1.8
815C next free address

803H USE FALUTOR % of table used 00 to FF (hexadecimal)
END OF ASSEMBLY

DIR SORT. »
SORT ASH source file
SORT BAK backup from iast edit
SORT PKN print file (contains tab characters)
SORT HEX machine code file
A>TYPE SORT.PRN
Source line
Vi, SNy
machine code location * SORT PROGRAN IN CF/N ASSEMBLY LANGUAGE
i START AT THE BEGINNING OF THE TRANSIENT PROGRAM Ak
6160 *—’// ORG 188H
generated machine code
8108 214661« SORT L¥l M. S¥ sADDRESS SWITCH TOGGLE
8103 3601 LA Mt JSET TO 1| FOR FIRST ITERATION
8165 214781 LRI H, 1 sADDRESS INDEX
0188 3¢6ae LU M. 0 il =8
H COMPARE | WI1Tn ARRAY SIZE
81ea 7E conpP. noy AN iA REGISTER = |
0168 FEBY CP1 N-1 ;LY SET IF I ¢ (N-1)
e16Db D21931 JHC CONT JCONTINUE 1F 1 (= (N-2)
. END OF ONE PASS THROUGH DATA
0118 214681 Lx1 H. S¥ ;CHECK FOR ZEKO SWITCHES
0113 7EB7C20001) MOY A,M! ORA A! JNZ SORT LEMD OF SORT IF Sy=8
i
9118 FF RST ? iGO TD THE DEBUGGER IMSTEAD DF RE:

! t
Jtuncated o NTINUE THIS Pass

. ADDRESSING 1. SO LOAD AVY(I) INTO REGISTERS
@119 SF1680214BCONT: MOY E.A! MVYI D, 8¢t LX1 H,AY! DAD D! DAD D

8121 4E752346 . MOY C,M! MOY A, C! INX M! MOV B.M
i LOV ORDER BYTE IN A AHD C, HIGH ORDER BYTE IN B8
’ MOY H AND L TQ ABDRESS AY(I+1)
8125 23 IHX H
i
i COMPARE YALUE WITH REGS CONTAINING AV(LD)
9126 965778239¢E SUB M! MOV D,A! MOY A, B! INX H!' SBB iSUBTRACT
i BORROYW SAT IF AY(I+t) > AY(I)
8128 DA3FE1 JC INCI »SKIP IF 1N PROFER ORDER
i CHECK FOr EQUAL VALUES
812E B2CAlIFO! ORA D! JZ THC] SKIP IF AY(1) = AV(I+1) ~~
@132 56762B5SE MOY D.M! MOY M,B! DCX H!' MOY E.M
0136 712B722873 MO0y M. C! DCX Ht MOY M, D} DLCX H! MOY M. E
i
i INCREMENT SUWITCH COUNT
0138 21460134 LKI H,SU! [NR M

3-116

i INCREMENT I
B13F 21478134C3INCI:

JRESERYE SPACE FOR SWITCH COUNT

;COMPUTE N INSTEAD OF PRE

LX1 H, 1! IHR M! JNP COMP
i DATA DEFINITION SECTION
8146 00 Su: 1]]
0147 I DS 1 ;SPACE FOR INDEX
61468 BSBR64001EAY: i1] 5,160,306, 50, 26,7, 1860, 190,100, -32767
eQeA = N EGU ($-AV)~s2
@81SC ™ — equate value EHD

AYTYPE SORT.HEX

.1001P90B214601360121470136087EFEBID21901486
:106110062146017EB7C20081FF5F16002148011983
18812000 194E79234623965778239EDA3FBIBZCAAY
:190130003F0156702BSE712B722B732146013421C7
:07014000470134C30R01006E
:10014800050664001E00320014000700E0032C018BB
:94015800640001008E

- 09pB6000000
A>DUDT SORT. HEX

machine code
in HEX format

start debug run

16K DDT VER 1.8

NEXT PC

815C #0808 default address (no address on END statement)
-XP
P=0008

188 changePCto 100

-UFFFF untrace for 65535 steps

CoZoMBEDIO
-Tie

A=Pp0@ B-0000 D=0000
trace 10, steps

H=@Rp0@ 5-0100 P=01060

CezZomBERI®
cozemecole
CezomMoEBI®
Cezenetole
CezemeEelo
CoeZoMeEQI D
CizpMiEQI@
Cizenteodle
Ci1zamiEele
Ci1zeMiEQI®@
CozeMneEBI®
CozoneEole
CozZomoEDlI @
CoZoMBE®]®
CoZondEB]1®
CozoneEsl®
~A106D

CELRY
A=D1
CEL D)
A=B 1
A=0
A=00
A=90
CELT]
A=P9
A=PB
A=01
A=Q1
A=D1
A=B L
A=01
A=z@1

LELL-LY]
g=0000
B=0006
B=p0860
B=00886
B=¢000
8=0000
g=00080
Bz0080
B=@00080
B200O0
B=@000
Bz0 000
B-=p0BO
B=0000
B=8008

De=d0 @0
V=000
b2p0 00
D=0008
D=0000
D=0000
D=0000
D=bo0e
D=000e
D=8000
b=00 00
D=p00d
D=0000
D=06000
D=0000
D=00086

H=@146
H=0146
H=08146
H=8147
H=9147
H=0147
H=0147
H=0147
H=0146
H=20146
H=@146
H=0146
H=0146
H=0146
H=0147
H=8147

S=019080
§=01080
$x0108
$=9100
$=0100
§=0100
$=01080
$=0100
S=010p0
S=@100
S=9100
S=0100
S=9100
5=0100
S=01080
$=0100

P=g108@
P=gt@3
P=@165S
P2@tés
P=@10n
P=@168
P=016D
P=01160
Pz8113
Pu@l14
P=@115
P=d1080
P=0103
P=2105
PxRtes
P=@10R

g}eg JC 119 changeto a jump on carry
1
-XF

P=018B 100 reset program counter back to beginning of program

~T18 trace execution for 10H steps
Co20MBERI®
CO20MBERI®
Cezonocole
Co20MBEDLI O
cazempeeole
cezenecele
C12eniEQ10
ClZonilE6lID
ci1zeniE0dle
Ci20M1EQIL
ci1z8nM1EQ10
£0ZomM1EQID

CEL]]
A=p0@
A=60
A=09
A=H0
A=60
A= 9
A=00
A=89
A=00
AxB0
A=00

B=09BO
B=0080
B=0000
B=6080
8=0000
B=p008®
B=60B0
B=0000
B=60080
B=60080
B=0000
B=0008

D=0000
D=0000
D=po oo
D=8000
D=p0 086
D=p0B0b
D=b@@0
b=0e00
D=0000
D=@000
D=p0B0BO
D=0000

H=20147
H=0146
H=9146
H=0147
H=0147
H=0147
H=0147
H=0147
H=@147
H=0147
Hzd148
H=01 48

$=01080
$=01880
$=01600
$=01080
S=0100
$=0100
$=01080
$=0160
$=0100
€=0100
S=010680
$=91080

Prdt160
P=8163
P=01695
P=8108
Pz@18A
P=0108
Pz=@10D
P=0119
P=@11A
P=811C
P=011F
P=0129

3-117

LX1

LX1
Myl
LXI
LE2
MOV
cPl
JNC
LX1
noy
ORA
JNZ
LX1
nvi
LX1
nvl1
nov

abort with
rubout

H,@146+0180

H,0146
M, 01
H.B147
H,00
A.n

09
8119
H, 08146
AN

]

o180
H, 0146
", 01
H,8147
", 060
A, M+*B18B

stopped at j

10BH

LXI
LA D]
LXI
LA D!
noy
CPrl
JC

novy
MY1
LXI
DAD
DAD

H,0146
n.01
H,0147
M. 8@ itered instruction
AN

3

8119

E,R

.00

H,0148

D

D

tozeni1Ee1e A=ed B=6008
CBZOMIEOID A=80 B=809%
COZONIERIG A=03 B=@08S
COZBNIEDID® A=BT 828903
-L1080

8100 (X! H.Bl46
0183 MNYI M.81
81985 L%l H,0147
8198 Mvl m. 00

D=0808 H=0148 S=01@@ P=al2i MOV
D=800d H=0148 $=-91Q0¢ F=2122 WOV &
D2p000 H=0148 620160 P=0123 INX H
DnBB0® N=»0149 S=2108 Pud124 MOV 8

Automatic /

breakpoint

2194 MOV A.N list some code
81908 CP1 @9 from 100H

818p J¢€ 9119
81186 LXI H,0146
8113 Mov aA.M
8114 ORA A

8115 JUNZ 91088
-L

8ile RST @87
8119 MOV E.A
e1tA MYl D,ee
011C LX] H,9148
- abort list with rubout

list more

-G, 118 start program from current PC (0125H) and run in real time to 11BH

*0127 stopped with an external interrupt 7 from front panel {program was looping indefinitely)
-T4 look at looping program in trade mode L

CO20MPEQ]I® A=30 B=9064
COZOMAESI D A=30 B=0064
COZONBESI® A=00 B=9064
CoZoMOEOI® A=00 B=0064
~D1i4@

8146 85 09 07 00 14 B0
9130 32 80 64 00 64 00
8160 00 02 09 00 00 00

- GO retum to CP/M

D=8806 H=3136 S=91900 P=9127 MOV D.
D=3506 H=d136 S=0108 P=28128 MOV A,
D=30086 H=0@156 S»0100 P=0123 INX H
D=3006 H=081357 S=010@ P=012A SBB Meb129

data is sorted, but program doesn't stop
1€ 80 .
2C 81 EO @3 01 09 00 92 96 80 2 D.D .
69 00 89 v 0O 06 60 09 ab w¥0

DDT SORT. HEX reload the memory image

16K DOT VER 1.9

HEXT PC
813C 8200
-%pP

P=0008 108€ Set PCto beginning of program

-L10)

list bad opcode

8100 JNC 0119¢
8110 LX! H,0146

= abort list with rubout
-A18) assemble new opcode
210D JC 119

e11le

-L189 list starting section of program

61900 LX%1 H.0146
8103 MYI nm. 9t
8185 LX1 H.0147
2188 MVl M, @8
- abort list with rubout

-#i183 change “switch" initialization to 00

3-118

/-"\

81083 Mvi M, @

B16S

-~¢ retum to CP/M with ctl-c (GO works as weil)

SAVE 1 SORT.COM save | page (256 bytes, from 100H to 1FFMH) on disk in case

we have to reload later

A>DDBT SORT.COM restart DDT with
saved memory image

16K DDT VEK 1.0
NEXT PC

6200 9100 "COM' file always starts with address 100H
=G run the program from PC=100H

*8118 programimed stop (RST 7) encountered

~Di4s

data sorted
o~ property

8146 03 06 @7 00 14 09 1E B0
8156 32 00 64 90 ¢4 9@ 2C 01 EB 83 01 80 00 90 90 80 2 D.D ...
8160 PO 90 00 09 20 20 PO 09 02 00 PO 0 00 09 90 PE
8170 00 00 00 oo 00 00 00 00 08 00 08 o9 09 VD 08 09

= GO retum to CP/M
ED SORT.ASM make changes to original program
ctiZ
N, TV findnext 0"

nvi nea i1 = @
*~ uponelinein text

LX1 H.1 iADDRESS INDEX
*~ up another line

LLJ] f.1 “SET TO 1 FOR FIRST 1TERATION
KT kili line and type next line

Lx1 N, T +ADDRESS INDEX
*1 insert new iine

syl n.e +ZERD 54
T

Lxt H.1 ADDRESS INDEX
shanc ot

JHC T

CONT JCOMTINUE IF 1 <= (N-2)
o-201cCpr T

Ji CONT JCONTIMUE 1F 1 <= (H-2)
‘€ source from disk A

x hexto disk A

ASM SORT. AAZ+— skip pm file

CP/M ASSENMBLER - VER 1.0

15C next address to assembie
BBOIN USE FACTOR
END OF RSSEMBLY

8DT SORT.HEX test program changes

16K DOT VEK 1.8
NEXT FC

8150 v@ep

-Gl

*@118
-D148

data sorted

8148 B3 80 07 08 14 €8 1E 60 .. P
8130 32 00 64 986 €4 B8O 2C 01 €5 03 81 B0 PO 80 @6 6O 2 D D .
P16t 00 60 0O Q@ 06 60 D@ 6O @D 66 bLe 60 09V EY 4D WO

- abort with rubout

-G@ return to CP/M — program checks OK.

3-119

3-120

TN

CHAPTER 5
CP/M Dynamic Debugging Tool

* Introduction

* DDT Commands

* The A (Assemble) Command
* The D (Display) Command

* The F (Fill) Command

* The G (Go) Command

* The I (Input) Command

* The L (List) Command

* The M (Move) Command

* The R (Read) Command

* The S (Set) Command

* The T (Trace) Command

* The U (Untrace) Command -
* The X (Examine) Command

* Implementation Notes

» Sample Session

3-121

3-122

P

Introduction

The DDT program allows dynamic interactive testing and debugging of
programs generated in the CP/M environment. The debugger isinitiated by
typing one of the following commands at the CP/M Console Command level

DDT
DDT filename. HEX
DDT filename.COM

where “filename” is the name of the program to be loaded and tested. In both
cases, the DDT program is brought into main memory in the place of the
Console Command Processor (refer to the CP/M Interface Guide for
standard memory organization), and thus resides directly below the Basic
Disk Operating System portion of CP/M. The BDOS starting address, which
islocatedin the address field of the JMP instruction at location 5H, is altered
to reflect the reduced Transient Program Area size.

The second and third forms of the DDT command shown above perform the
same actions as the first, except there is a subsequent automatic load of the
specified HEX or COM file. The action is identical to the sequence of
commands

DDT
Ifilename. HEX or Ifilename.COM
R

where the I and R commands set up and read the specified program to test.
(See the explanation of the I and R commands below for exact details.)

Upon initiation, DDT prints a sign-on message in the format
nnK DDT-s VER mm

where nn is the memory size (which must match the CP/M system being
used), sis the hardware system which is assumed, corresponding to the codes

Digital Research standard version
MDS version

IMSALI standard version

Omron systems

Digital Systems standard version

no~zg

and m.m is the revision number.

3-123

Following the sign on message, DDT prompts the operator with the
character “~” and waits for input commands from the console. The operator
can type any of several single character commands, terminated by a carriage
return to execute the command. Each line of input can be line-edited using
the standard CP/M controls

rubout remove the last character typed
Control-X remove the entire line, ready for re-typing
Control-C system reboot

Any command can be up to 32 characters in length (an automatic carriage
returnisinserted as the 33rd character), where the first character determines
the command type

A enter assembly language mnemonics with operands
D display memory in hexadecimal and ASCII

F fill memory with constant data

G begin execution with optional breakpoints

—

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination
read program for subsequent testing

substitute memory values

trace program execution

untraced program monitoring

M o 3w o= 2o

examine and optionally alter the CPU state

The command character, in some cases, is followed by zero, one, two, or three
hexadecimal values which are separated by commas or single blank
characters. All DDT numeric outputisin hexadecimal form. In all cases, the
commands are not executed until the carriage return is typed at the end of
the command.

Atany point in the debug run, the operator can stop execution of DDT using
either a Control-C or GO (jmp to location 0000H), and save the current
memory image using a SAVE command of the form

3-124

N

SAVE n filename.COM

~— where n is the number of pages (256 byte blocks) to be saved on disk. The
number of blocks can be determined by taking the high order byte of the top
load address and converting this number to decimal. For example, if the
highest address in the Transient Program Area is 1234H then the number of
pages is 12H, or 18 in decimal. Thus the operator could type a Control-C
during the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The memory image is saved as X.COM on the diskette, and can be directly
executed by simply typing the name X. If further testing is required, the
memory image can be recalled by typing

DDT X.COM

which reloads the previously saved program from location 100H through
page 18 (12FFH). The machine state is not a part of the COM file, and thus
the program must be restarted from the beginning in order to properly test
it.

DDT Commands

The individual commands are given below in some detail. In each case, the
operator must wait for the prompt character (-) before entering the
command. If control is passed to a program under test, and the program has
not reached a breakpoint, control can be returned to DDT by executing a
RST 7 from the front panel (note that the rubout key should be used instead
if the program is executing a T or U command). In the explanation of each
command, the command letter is shown in some cases with numbers
separated by commas, where the numbers are represented by lower case
letters. These numbers are always assumed to bein a hexadecimal radix, and
from one to four digits in length (longer numbers will be automatically
truncated on the right).

Many of the commands operate upon a “CPU state” which corresponds to
the program under test. The CPU state holds the registers of the program
being debugged, and initially contains zeroes for all registers and flags except
for the program counter (P) and stack pointer (S), which default to 100H.
The program counter is subsequently set to the starting address given in the

~ . last record of a HEX file if a file of this form is loaded (see the I and R
commands).

3-125

The A (Assemble) Command

DDT allows inline assembly language to be inserted into the current
memory image using the A command which takes the form

As

where s is the hexadecimal starting address for the inline assembly. DDT
prompts the console with the address of the nextinstruction to fill, and reads
the console, looking for assembly language mnemonics (see the Intel 8080
Assembly Language Reference Card for a list of mnemonics), followed by
register references and operands in absolute hexadecimal form. Each
successive load address is printed before reading the console. The A
command terminates when the first empty line is input from the console.

Upon completion of assembly language input, the operator can review the
memory segment using the DDT disassembler. (See the L command.)

Note that the assembler/disassembler portion of DDT can be overlayed by
the transient program being tested, in which case the DDT program
responds with an error condition when the A and L. commands are used.

The D (Display) Command

The D command allows the operator to view the contents of memory in
hexadecimal and ASCII formats. The forms are

D
Ds
Ds,f

In the first case, memory is displayed from the current display address
(initially 100H), and continues for 16 display lines. Each display line takes
the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ccceceececeeccee

where aaaa is the display address in hexadecimal, and bb represents data
present in memory starting at aaaa. The ASCII characters starting at aaaa
are given to the right (represented by the sequence of ¢’s), where non-graphic
characters are printed as a period {.) symbol. Note that both upper and lower -
case alphabetics are displayed, and thus will appear as upper case symbolson
a console device that supports only upper case. Each display line gives the
values of 16 bytes of data, except that the first line displayed is truncated so
that the next line begins at an address which is the multiple of 16.

3-126

Thesecond form of the D command shown above is similar to the first, except
that the display address is first set to address s. The third form causes the
display to continue from address s through address f. In all cases, the display
address is set to the first address not displayed in this command, so that a
continuing display can be accomplished by issuing successive D commands
with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout key.

The F (Fill) Command

The F command takes the form
Fs,f,c

where s is the starting address, f is the final address, and ¢ is a hexadecimal
byte constant. The effect is as follows: DDT stores the constant ¢ at address
s, increments the value of s and tests against f. If s exceeds f then the
operation terminates, otherwise the operation is repeated. Thus, the fill
command can be used to set a memory block to a specific constant value.

The G (Go) Command

Program execution is started using the G command, with up to two optional
breakpoint addresses. The G command takes one of the forms

G

Gs
Gs,b
Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the program counter in the current machine state, with no breakpoints set
(the only way to regain control in DDT is through a RST 7 execution). The
current program counter can be viewed by typingan X or XP command. The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
- address b is encountered (b must be in the area of the program under test).
The instruction at location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are specified, one at b and the other at c¢. Encountering either
breakpoint causes execution to stop, and both breakpoints are subsequently

3-127

cleared. The last two forms take the program counter from the current
machine state, and set one and two breakpoints, respectively.

Execution continues from the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by DDT. Thus, if the program under test does not
reach a breakpoint, control cannot return to DDT without executing a RST
7 instruction. Upon encountering a breakpoint, DDT stops execution and

types
*d

where d is the stop address. The machine state can be examined at this point
using the X (Examine) command. The operator must specify breakpoints
which differ from the program counter address at the beginning of the G
command. Thus, if the current program counter is 1234H, then the
commands

G,1234
and
G400,400

both produce an immediate breakpoint, without executing any instructions
whatsoever.

The I (Input) Command

The I command allows the operator to insert a file name into the default file
control block at 5CH (the file control block created by CP/M for transient
programs is placed at this location; see the CP/M Interface Guide). The
default FCB can be used by the program under test as if it had been passed
by the CP/M Console Processor. Note that this file nameis also used by DDT
for reading additional HEX and COM files. The form of the I command is

Ifilename
or
Ifilename.filetype

If the second form is used, and the filetype is either HEX or COM, then
subsequent R commands can be used to read the pure binary or hex format
machine code (see the R command for further details).

3-128

The L (List) Command

The L command is used to list assembly language mnemonicsin a particular
program region. The forms are

L
Ls
Ls,f

The first command lists twelve lines of disassembled machine code from the
current list address. The second form sets the list address to s, and then lists
twelve lines of code. The last form lists disassembled code from s through
addressf. In all three cases, the list addressisset to the next unlisted location
in preparation for a subsequent L. command. Upon encountering an
execution breakpoint, the list address is set to the current value of the
program counter (see the G and T commands). Again, long typeouts can be
aborted using the rubout key during the list process.

The M (Move) Command

The M command allows block movement of program or data areas from one
location to another in memory. The form is

Ms,fd

where s is the start address of the move, fis the final address of the move, and
d is the destination address. Data is first moved from s to d, and both
addresses are incremented. If s exceeds f then the move operation stops,
otherwise the move operation is repeated.

The R (Read) Command

The R command is used in conjunction with the I command to read COM
and HEX files from the diskette into the transient program area in
preparation for the debut run. The forms are

R
Rb

. where b is an optional bias address which is added to each program or data
address as it is loaded. The load operation must not overwrite any of the
system parameters from 000H through OFFH (i.e., the first page of memory).
Ifbis omitted, then b =0000is assumed. The R command requires a previous
I command, specifying the name of a HEX or COM file. The load address for

3-129

each record is obtained from each individual HEX record, while an assumed
load address of 100H is taken for COM files. Note that any number of R
commands can be issued following the I command to re-read the program
under test, assuming the tested program does not destroy the default area at
5CH. Further, any file specified with the filetype “COM” is assumed to
contain machine code in pure binary form (created with the LOAD or SAVE
command), and all others are assumed to contain machine code in Intel hex
format (produced, for example, with the ASM command).

Recall that the command
DDT filename.filetype
which initiates the DDT program is equivalent to the commands

DDT
-Ifilename.filetype
-R

Whenever the R command is issued, DDT responds with either the error
indicator “?” (file cannot be opened, or a checksum error occurredin a HEX
file), or with a load message taking the form

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program, and pppp is the
assumed program counter (100H for COM files, or taken from the last record
if a HEX file is specified).

The S (Set) Command

The S command allows memory locations to be examined and optionally
altered. The form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration
of memory. DDT responds with a numeric prompt, giving the memory
location, along with the data currently held in the memory location. If the
operator types a carriage return, then the data is not altered. If a byte value
is typed, then the value is stored at the prompted address. In either case,
DDT continues to prompt with successive addresses and values until either
a period (.) is typed by the operator, or an invalid input value is detected.

3-130

AN

The T (Trace) Command

The T command allows selective tracing of program execution for 1 to 65535
program steps. The forms are

T
Tn

In the first case, the CPU state is displayed, and the next program step is
executed. The program terminates immediately, with the termination
address displayed as

*hhhh

where hhhh is the next address to execute. The display address (used in the
D command) is set to the value of H and L, and the list address (used in the
L command) is set to hhhh. The CPU state at program termination can then
be examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a program
breakpoint occurs. A breakpoint can be forced in the trace mode by typing
arubout character. The CPU state is displayed before each program step is
taken in trace mode. The format of the display is the same as described in the
X command.

Note that program tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the program under test. Thus, CP/M
functions which access 170 devices, such as the diskette drive, run in
real-time, avoiding I/0 timing problems. Programs running in trace mode
execute approximately 500 times slower than real time since DDT gets
control after each user instruction is executed. Interrupt processing routines
can be traced, but it must be noted that commands which use the breakpoint
facility (G, T, and U) accomplish the break using a RST 7 instruction, which
means that the tested program cannot use this interrupt location. Further,
the trace mode always runs the tested program with interrupts enabled,
which may cause problems if asynchronous interrupts are received during
tracing.

Note also that the operator should use the rubout key to get control back to
DDT during trace, rather than executinga RST 7,in order to ensure that the
trace for the current instruction is completed before interruption.

3-131

The U (Untrace) Command

The U command is identical to the T command except that intermediate
program steps are not displayed. The untrace mode allows from 1 to 65535
(OFFFFH) steps to be executed in monitored mode, and is used principally to
retain control of an executing program while it reaches steady state
conditions. All conditions of the T command apply to the U command.

The X (Examine) Command

The X command allows selective display and alteration of the current CPU
state for the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry Flag 0/1)

Z Zero Flag (0/1)

M Minus Flag 0/1)

E Even Parity Flag (0/1)

I Interdigit Carry (0/1)

A Accumulator (0-FF)

B BC register pair (0-FFFF)
D DE register pair (0-FFFF)
H HL register pair (0-FFFF)
S Stack Pointer (0-FFFF)
P Program Counter (0-FFFF)

In the first case, the CPU register state is displayed in the format
CfZfMfEfIf A=bb B=dddd D=dddd H=dddd S=dddd P =dddd inst

where fis a 0 or 1 flag value, bb is a byte value, and dddd is a double byte
quantity corresponding to the register pair. The “inst” field contains the
disassembled instruction which occurs at the location addressed by the CPU
state’s program counter.

The second form allows display and optional alteration of register values,
where r is one of the registers given above (C,Z,M,E,I, A,B,D, H, S, or P).
In each case, the flag or register value is first displayed at the console. The
DDT program then accepts input from the console. If a carriage return is
typed, then the flag or register value is not altered. If a value in the proper
range is typed, then the flag or register value is altered. Note that BC, DE,

3-132

P

and HL are displayed as register pairs. Thus, the operator types the entire
register pair when B, C, or the BC pair is altered.

Implementation Notes

The organization of DDT allows certain non-essential portions to be
overlayedin order to gain a larger transient program area for debugging large
programs. The DDT program consists of two parts: the DDT nucleus and
the assembler/disassembler module. The DDT nucleus is loaded over the
Console Command Processor, and, although loaded with the DDT nucleus,
the assembler/disassembler is overlayable unless used to assemble or
disassemble.

In particular, the BDOS address at location 6H (address field of the JMP
instruction at location 5H) is modified by DDT to address the base location
of the DDT nucleus which, in turn, contains a JMPinstruction to the BDOS.
Thus, programs which use this address field to size memory see the logical
end of memory at the base of the DDT nucleus rather than the base of the
BDOS.

The assembler/disassembler module resides directly below the DDT
nucleusin the transient program area. Ifthe A, L, T, or X commands are used
during the debugging process then the DDT program again alters the address
field at 6H to include this module, thus further reducing the logical end of
memory. If a program loads beyond the beginning of the
assembler/disassembler module, the A and L commands are lost (their use
produces a “?” in response), and the trace and display (T and X) commands
list the “inst” field of the display in hexadecimal, rather than as a decoded
instruction.

Sample Session

The following example shows an edit, assemble, and debug for a simple
program which reads a set of data values and determines the largest value in
the set. The largest value is taken from the vector, and stored into “LARGE”
at the termination of the program

ED _SCAN. AgH
R tab character Mnmnecho
Ly 11 ﬂ/u.m 1SSTaRT oF TRausIENT aREa
17 B.LEH G LENGTH OF VECTOR 1O SCAM
(171] LABGER AT YALUE 50 FAR
L00P_P.0.0.L LXI . VECT :8ASE OF YECTOR
CO0B.% #OY A 1GET VALUE
nbout | CUE L WABGER VALUE [N G2
deletes NG HFOUND 1y F UE_MOT FOu
_charactersNEU LARGEST VRLUE. STORE 1 16 ¢
noY A,

HFOUND. IHX H ;10 NEKT ELEMENT
R G 3 mmeveemaet geeSw
i PLH L00P ~FOR ANOTHER characters typed
i END OF SCAM, STORE C by programmer.
(TN a.C iGET LARGEST VALUE
§Ta LAR
JHP 2 LREBOOT
n LEST DATA
YECT] ,0,4,3,5.6,1,5
LEN EQU F-VECT LENGTH
LARGE: 1S A fLARGEST VALUE QN EXIT
END
1Z 258P
ORG 190H iSTART OF TRANSIENT AREA
nvl B, LEN iLENGTH OF YECTOR TO SCAN
nvl c,0 iLARGEST YALUE SO FAR
Lxl H,VECT ;BASE OF VECTOR
LOOP. nov AN JGET VALUE
sue o iLARGER VALUE IN C?
JNC NFOUND JUMP IF LARGER VALUE NOT FOUND
i NEW LARGEST VALUE, STORE IT TO0 €
noy C. R
NFOUND: 1INX H ;TO MEXT ELEMENT
DCR [} iMORE TO SCAN?
JN2 LOOP iFOR ANOTHER
; END OF SCAN, STORE C
nov A C ;GET LARGEST VALUE
§Ta LARGE
JHP e iREBOOT
i TEST DATA
VECT be 2,6,4,3,5,6,1.5
LEN EQU $-VECT LENGTH
LARGE: DS 1 iLARGEST VALUE ON EXIT
END
*E <+——End of Edit
A3h 38N Start Assembler
CP/M ASSEMBLER - VER 1.0

p122
BB2H USE FACTOR
END OF ASSEMBLY Assembly Complete — Look at Program Listing

TYPE SCAN.FPRN

Code Address Source Program
eiee Machine Code ORG 188H :S3TART OF TRANSIENT ARER
e18e 0608 myl B, LEN :LENGTH DF YECTOR TO SCAN
0102 BEMO myl c., o JLARGEST YALUE SO FAR
o184 211901 LK1 H, YECT ;BASE OF YECTOR
8187 7E LOOP: LI A M s GET VALUE
8198 91t sue c JLWRGER VALUE IN C7
91869 D2ebde! JNC NFOUND ; JUMP 1F LARGER YALUE NOT FOUND
i NEW LARGEST YALUE. STORE IT 7O C
8108C 4F Mov C.A
e18d 23 NFOUKD: IHX H ;TO NEXT ELEMENT
G10E 085 DCR B ;MORE TO SCAN?
Q18F C207081 JN2Z LOOP iFOR ANOTHER
i EHD OF SCAN, STORE C
@112 79 Moy A. C JGET LARGEST Y¥ALUE
8113 322181 STA LARGE
@116 C30@00 JHP] ;REBOOT
Code/data listing
truncated— TEST DATA
0119 P200840305VECT: b 2,90,4,.3,5,6,1,5

3-134

P

8000 = LEN EQU $-YECT . LENGYH

8121 Valuem LARGE : s 1 JLARGEST YALUE ON EXIT

8122 Equate' EHD

A>

DDT SCAN. HEX

—_— = Start Debugger using hex format machine code

16K DDT VYER 1.6@

NEXT PC

8121 _obeee

-X e ———— last load address + 1 next instruction
to execute at

C626MBEQI® A=P@ D=00@RP D=8P0® H-0@OP S=016@ P=@ewd OUT ?F PC=0

-XP

Examine registers before debug run

Change PCto 100
g3 Look at registers again PC changed

P=2608 100

(820MPEA!D A=0@ B=280P0 D=ROOF H=0608 S=0100 F20188 MY] 8,88
~-Li0@ Next instruction

to execute at PC=100
6186 MYl 8,88
8162 MYl C.8@
0184 LXI H.0119

81087 MOV A.M Disassembied Machine
8108 SUB C Code at 100H

8109 JNC 018D (See Source Listing
#16C MOV C.A for comparison)

816D INX H
WieE DCR B
G10F JUNZ @187
8112 MOY A.C
L

2113 STAa @Bl12!
B116 JWMP @ede

8119 STax B A little more

g11a HOP machine code
8118 1HR B (note that Program
211C INWX B ends at location 116
811D DCR B with a JMP to 0000)
B11E MV] B.01

#1280 DCR B

2121 LX1 U,22080

8124 LX! H,8280

-A11€ enterinline assembly mode to change the JMP to 0000 into a RST 7, which
will cause the program under test to retum to DDT if 116H

B116 RST 7 is ever executed.

8t1? (single carriage retumn stops assembly mode)
-L113 List Code at 113H to check that RST 7 was properly inserted

8113 STA @12} in place of JMP
a116 RST 87 &

8117 NOP
@118 NOP
8119 STAX B
811A NOP

@118 INR B
811C INX B

-X Look at registers

CO20MOEQIQ® A=90 B=800P D=0@06 H-000® S$S=010@ P=2180 MVI B,96
-1
- Execute Program for one step. initial CPU state, before J is executed

COZBMBEBI® A=80 B=0080 D=000P H=0HO® S=€100 P=0100 MYl B.,08#0102

Trace one step again (note 08H in B) automatic breakpoint
CO20MBEQI® A=P0 B=P8RP D=000R H=QGE® S=-0i18@ FP=0182 MYl C.eG0ed104

3-135

Trace again (Register C is cleared)

CeZoMBEGI® A=00 B=8BRO D=BE80P H=0P0P 5=010¢ P=0104 LXI]
“I3 Trace three steps

COZOMBEOI® A=00 B=0800 D=8000 H=6119 S$Sx0100 P=0107 MOV
COZOMPEDID® AR=92 B=88P0 D=900¢ H=0119 5-0100¢ P323108 SUB
COZOMPEB]) A=02 B=88P0 D=POA? H=B119 $=01808 P=01R9 JNC

gpati] Display memory starting at 119H. Automatic breakpoint

H,B8119%0187

ALH
c
etepseieDd

at 10DH /

811982 00 84 83 05 86 o) 'ogamdata «— Lower case x —_,
#120\93/T1 80 22 21 B0 62 7E EB 77 i3 23 EB as’ TR
® v e

B1
8136 C2 27 @1 C3 83 29 00 90 6P 00 00 00 00 08 9P 8O
0140 00 00 00 00 00 00 0O 00 00 00 00 0O 00 00 00 0O

]

0150 60 00 80 80 00 00 00 82 88 08 PO B0 80 80 38 08 Dataisdisplayed
0150 00 P 00 p® 00 0D PP 0P PP 8P PO 8O 00 080 80 3P Hh ASCliwitha 0~
6170 00 00 00 6P 90 PP 00 00 0P 0p PO B0 8@ B0 38 BO | the position of
6150 @0 00 90 0P 00 PP PO 80 PP PP PO 8O B8 88 80 8@ non.graphic
8150 @0 00 90 6P 0P 90 PP PP ©P 0P 00 00O 20 BB 00 8O characters

81RO 00 00 PO 00 00 00 09 00 08 00 00 80 20 0P 00 8O

0100 00 90 90 P® ©P D PO PO 0P 8P 6P 6O 00 00 00 PO

91CO PO 90 90 00 0B OO 8O PO 00 PP 0P 90 PO 80 PO 0P
-X Current CPU state

COZBMBERGI1 A=92 B=P00O D=P0PO H=0119% S=0100 P=210D INX

Trace 5 steps from current CPU state

CO9ZOMOED]I] A=02 B20000 D=BP00 H~O0119 S=0180 P=010D INX
COZOMOEGI] RA=P2 B=0000 D=0080 H=011R S=0100 P=@I0E DCR
CBZOMOEGI1 R=02 B=87P0 D=806O N=011AR S%0100 P=010F JNZ
CeZOMPES]IL A=B2 B=0700 D=p000 H=@1in S$=0100 P=0107 MOV
(B0ZOMRES]L R=00 B=0780 D=POPO H=@11R S=0100 P=9108 SUB

Trace without listing intermediate states
COZIMOELIl A=00 B=0780 D=3000 Hew@)1tA S=0100 P=8169 JUNC
-X CPUState at end of U5

COZOMBEII1 A=@4 B28600 D=P200 H=d110 S5=0123 P=0108 SUB

-G Run program from current PC until completion (in real-time})

p breakpoint at 116H, caused by executing RST 7 in machine code
01t

X

- CPU state at end of program

COZIMPEIl) A=0O B=0000 D=PBBE® H=@12} 58180 Px01i6 RST
-%E examine and change program counter

P=@116 1880

-

COZIMBELT)! A=6p B=p0OOO D=P0BG H=-9121 S=2106 P=0108 MYI
“I18 frace 10 (hexadecimal) steps

COZIMOELIL 16y P=B100 MV]
COZIMAELITY S=0168 P=0162 WYI]
COZiMeELITY €20100 F=0104 LXI
COZIMeELI "E=8106 P=86107 MOV
COZIMBELTL $=0108 P=8193 SUSB

3-136

H

H

8 Automatic
8187 Breakpoint
AM

ced109

ai1eDed108

c

B.88
subtext for comparison
A(C
B,088
C,90
H,0113
A M
C

CO2OMBERI L A=B2 B=08A0 [=00080 H<B119 S=6196 P=9@183 JUNC 610D
CO0ZoMBERI1 A=82 P=pEP8 D=08RK H=0119 $=0100 P=810D INX
Ce2AMAEQ]! A=02 B=@PB@ D=PR08B H=@11A Sx0100 F=B18E DCR
CBZOMPERI! A292 B=B789 D=ROO6 H=011f S=0190@ P301AF JNZ 08187
CPZOMOERIL A=P2 B=07P6 D=BAOH H=@11A $:-0190 P=0187 MOY AN
COZBMBEDI] A=0Q B=0700 DU=6800 H=Q!11A S=Q1A@ P=0168 SUB C
CO2ZIMPEII! A=BR B=6788 D=REOH H=B11p S=6100 F=BlE3 JNC 0109
COZIMPEIl1 A=@0 B=07B0 D=00090 HW=011A S5=0100 P=B18D INX H
CB21MBELI] A=99 B=G79P D=8POG H=d11B S=8100 P=910E DCR B
CeZOMPEII1 A=6® B=F6OH D=&0@EP H=811B 50108 PsBIBF JNZ 0107
COZBMAELl}! A=0@ B=060@ D=PPOO H=611B S=81ed P=9167 MOV A, MeB188

aies Insert a “'hot patch " into Program should have moved the
189 JC 1ep the machine code value from A into C since A)C.
~——==" to change the Since this code was not executed.
818C INC to JC it appears that the JNC should

have been a JC instruction

-6e Stop DDT so that a version of
the patched program can be saved

SAVE 1 SCAN. COM Program resides on first page. so save | page.

A>BDT SCAN. COM Restart DDT with the saved memory image to continue testing
16k DDT VEKk 1. @

HEXT PC

9200 91080

~L168 List some code

8188 MVl 6,08
8182 Nyl C,e0

104 LXI H,@119 Previous patch is present in X-COM

167 mMOY a.nM
9188 SUB C
8109 JC 816D
618 MOV L,k
8100 INX H
819E DCR B
B810F JUNZ 8187
811z Mmov¥Y 4. C
-2F

P=6168
-T18@ Trace to see how patched version operates Data is moved from A to C

2g109 MYl 8,88
F=y142 MYl .09
Fz@164 X1 H.8113

CoZ6MPEBlG 4=-68 B=p60@ [=0E05 M=9o8y 3:616€
C6ZOMPEQIB A=08 B=6000 D=0p90 H=BDOS
(G26MPEPI® 4=00® B=06BE D=0008 H=AUBD
C6ZOMBEBI® =09 B=000F D=-0808 P=2187 MOY A.N
rOZBNBESIB A B=830¢ D=pe8s =91806 Fz3i1988 SuUB L
(BZ6MBERIL A=B2 $86 D=8@ 5=9108 P=0189 JC 816D
(pzZomeesil Az02 W\ H=@0119 $=8180 P=2016(MOY C.A&
CozZeMBESI1 A=02 B D=8900 H=81:9 5=8109 P=818D INX *H
CeZeMpES]I1 A=02 D=8996 H=061!4 Sc=9189 PaR10E DCR O
(620MPEBI1 A=B2 B=97BZ D=008® H=&11A $=0108 P<B18F JNZ @
(9ZBMPEB]I! A=BZ B=0702 D=8400 H=9!1n S=01¢0 F=R187 MOV A.
¢
]
H

(BZeMOER@]I1 A=0@ E3p702z D=B88A H=#ila 5:=8199 Fz8108 SUB
C1ZeMiEBI® A=FE B=6782 D=0000 H=011# -=6188 P=4189 JC
C1Z8MIEQ]I® AsFE B=6702 D=0608 H=@B1!iA S=A1236 P=910D INK
(126MiE@BI@ A=FE B=070Z2 D=P@80 H=@1.E 3-8100 P=910E BCR B
C126MBEL1]1 A=FE B=060z D=P00%¥ H=61!B $=0109 P=818F JNZ 910791087
tr breakpoint after 16 steps/

C128MBE111 A=FE $:=A6Hz D=89080 H4=A118 <=8188 F=061067 "0V A,M
cG. 188 Run from current PC and breakpoint at 108H

“@188
-¥ next data item

C126MBEL]] 2=04 B=0602 D=p6OE H=6115 $<=0136 P=3188 SUB

5]

3-137

-1

Single step for a few cycles
CiZemMpElll w=84 B=0cBz D=B008 H=011H S=0189 P=8163 5UB C»8189
-1

(BZOMBER]L a=Gz B=R6BZ D=8000 H=011B
-X

o«
"
[3
o
-

P=e189 JC @18Ds018C

(COZOMBED®I1 A=B2 B=06BZ D=BB9M H=@11B S=-01800 P=Bi@C MOV [P]
& Run to completion

*8116

gt

C@ZI1MBELII1 A=B3 B=PEO3 D=0000 H=@12]
-stad look at the value of "LARGE."

8121 83 Wrong Value!

o
"

8160 P=0116 RST 87

8122 086

123 22

B1z24 21

0125 06

G126 B2 End of the S command
@127 7E ,

-Ltiaa

aige MYI B.83

giez Myl C.89

6194 LXI H,811%

a1y MOY AN ‘

6198 SUR C

B1as JC @lel

e1ec Mov C.n

B180 INX H

@19E DCk B

B1B8F JUNZ etle7

atlz MOV A.C Review the code

-L

#1113 §TA @i21
Bilé RST @7

B117 NOP

6118 NOP

119 STAxX &
211A NOP

a1lg INR B
a1tc INY B
611l DCK B
a1lE MYl B0
#1ze DCk B
ptid

F=6116 1868 Resetthe PC
-1 Single step, and watch data values

(BZIMBEL]] A=83 B=p@@3 D=60080 H=A121 S=G1@é P=91@é MVI B.B3eBl02
-T

C@ZIMBEL]] A=63 B-6803 D=PB@W H=@121 S=0180 F=98lE2 MYI C.60*0104
-7 count set

- “largest set

ZIMAEL]Y A=02 B=p3BD L=p0Oma H=@12! <=61@86 P=wled LXI H.B113+0187

3-138

.~ base address of data set
(821MBEL1]I1 w=03 B=v300 l=p0nBd H=@119 %=81@89 F=Bl@a7Y MOV A M+B13E
-1

- o first data item brought to A
C@21MAEL]L A=62 B=03060 D=000d H=06119 $=9100 P=016E& SUB C»@189

bZGMREG]1 A=@2 B=&&Pe D=p60E& H=a119

Blebsotiol

Z@aMBEBl1 A=02 B=06gHe D=pGRD H=9119 @19@ P=916C MOV C.A»Btald

first data item moved to C correctly

CezeaMeEe@ll A=p2 B=08BHBZ D=00%8 H=e11% S$=01@8@ P=A18D0 INX H»e1BE

ZuMBE@]ll A=BZ B=@k3bz D=booy P=@lpE DLCR BeaidFf

ZBMBEGIL =02 B=878C2 D=PPOE H=811R S=01@%H P=A@F JUNZ 01@7»0ti087

JeMBE@l! H=@82 2=86702 D=80ed H=gli§ 3=8126 Ps@le? M0¥ o, Meeiéd
o second data item brought to A

(@Z6MBERI! n=@08 B=A7AZ D=@00E H=011Rp S=01P@ Px0108 SUB C(we189

- Ve subtract destroys data value which was loaded!!!

ZoMIE@l@® Qq=FE B=e78C2 D=R@@8 H=911A S=010e P=@les JC p1eDpe01@D

C1Z6M1E@l@ A=FE B=B78z D=6oed H=811A S=91068 P=8160 INX H*@1QE
-Li@w

@126 MVlI B.@3

p12z MYl C.Q@

e184 LXI H, 8119

01n7 MOV a.M

P19& SUB ¢ «—— This should have been a CMP so that register A
@189 JC @18D would not be destroyed.
613l MOY C.A

8190 INx H

B1WE DCR B

B1eF JNZ ele?

#11z MOY A.C

-hlgs

r1g& (MP C hot patch at 108H changes SUB to CMP

-i3 stop DDT for SAVE

SAYE 1 SCAN. COM

save memory image
n>DPDT SCAN. COHM Restart DDT

16K DET VEK 1.@
NEXT PC

b2o@ 8100

- XF

F=01a6

3-139

-Lité

9116 K&T @7

#1117 NOP

GlLE NOP Look at code to see if it was property loaded
at1% sTax 8 (long typeout aborted with rubout)

BitA NOP

= (rubout)

-G 31€ Run from 1G0H to compietion

*@l1E
- X0 Look at‘;arry (accidental typo)

01

-4 Look at CPU state

0
o
iy

C1ZIMBEL]] wz@E D-a@Bf D=8008 H=a12] L=aliod Pr9li1é
mElzd Look at “‘Large”’ — it appears to be correct.

-69 stop DDT
ED SLANgnSH Re-edit the source program, and make both changes
*NSUE
. __"ﬁ"‘ /ctl-l
Su < JLARGER YALUE IM £7
» ol L] LY
cH c JLARGER VALUE IN L7

.

N NFOGURD . JUMP 1F LARGER VAGLUE NOT FOUND
» SNU LT

e HFOURD LHUMP 1F LAaRGER WRLUE MCT FOUND
£
W3M 3CAN_GAZ Re-assemble, selecting source from disk A
hex to disk A
{F M WSSEMBLER - YER 1 @ print to Z (selects no print file)
a1z2

JB:H USE FACTOR
END OF ASSEMBLY

IDT 3CHN HEX Rerun debugger to check changes

1EF BDT YER . @
wELT FC

a1zl beed
“Lti%

4116 JnMP @@ee check to ensure end is still at 116H
ERSE] 5TRY B
wilA NOF
HlLE INF B
{rubout}

ShiAa 1 1E Go from beginning with breakpoint at end

3-140

-0

121 (g a8

it Lz oev

breakpoint reached
took at "LARGE cormrect value computed
TE Eg 7?7 12 3
a1 @@ 0B 2% 06 ©vo
1306 P@ @9 29 BE v Be @@ 4@ B9 B9 00

- {rubout} aborts long typeout

G

stop DDT. debug session complete

ER 2E
6a aa
gy 89

3-141

78 B
sa 9@
g a9

a0
a8

